
This paper appeared in Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, August 2014.

Peeking into Your App without Actually Seeing It: UI State Inference and

Novel Android Attacks

Qi Alfred Chen, Zhiyun Qian†, Z. Morley Mao

University of Michigan, †University of California, Riverside

alfchen@umich.edu, zhiyunq@cs.ucr.edu, zmao@umich.edu

Abstract
The security of smartphone GUI frameworks remains

an important yet under-scrutinized topic. In this pa-

per, we report that on the Android system (and likely

other OSes), a weaker form of GUI confidentiality can

be breached in the form of UI state (not the pixels) by a

background app without requiring any permissions. Our

finding leads to a class of attacks which we nameUI state

inference attack. The underlying problem is that popular

GUI frameworks by design can potentially reveal every

UI state change through a newly-discovered public side

channel — shared memory. In our evaluation, we show

that for 6 out of 7 popular Android apps, the UI state in-

ference accuracies are 80–90% for the first candidate UI

states, and over 93% for the top 3 candidates.

Even though the UI state does not reveal the exact pix-

els, we show that it can serve as a powerful building

block to enable more serious attacks. To demonstrate

this, we design and fully implement several new attacks

based on the UI state inference attack, including hijack-

ing the UI state to steal sensitive user input (e.g., login

credentials) and obtain sensitive camera images shot by

the user (e.g., personal check photos for banking apps).

We also discuss non-trivial challenges in eliminating the

identified side channel, and suggest more secure alterna-

tive system designs.

1 Introduction

The confidentiality and integrity of applications’ GUI

content are well recognized to be critical in achiev-

ing end-to-end security [1–4]. For instance, in the

desktop and browser environment, window/UI spoofing

(e.g., fake password dialogs) breaks GUI integrity [3, 4].

On the Android platform, malware that takes screenshots

breaches GUI confidentiality [5]. Such security issues

can typically lead to the direct compromise of the con-

fidentiality of user input (e.g., keystrokes). However, a

weaker form of confidentiality breach has not been thor-

oughly explored, namely the knowledge of the applica-

tion UI state (e.g., knowing that the application is show-

ing a login window) without knowing the exact pixels of

the screen, especially in a smartphone environment.

Surprisingly, in this paper we report that on the An-

droid system (and likely on other OSes), such GUI con-

fidentiality breach is indeed possible, leading to serious

security consequences. Specifically, we show that UI

state can be inferred without requiring any Android per-

missions. Here, UI state is defined as a mostly consis-

tent user interface shown in the window level, reflecting

a specific piece of program functionality. An example

of a UI state is a login window, in which the text con-

tent may change but the overall layout and functionality

remain the same. Thus, we call our attack UI state infer-

ence attack. In this attack, an attacker first builds a UI

state machine based on UI state signatures constructed

offline, and then infers UI states in real time from an un-

privileged background app. In Android terminology, the

UI state is known as Activity, so we also call it Activity

inference attack in this paper.

Although UI state knowledge does not directly reveal

user input, due to a lack of direct access to the exact pix-

els or screenshots, we find that it can effectively serve as

a building block and enable more serious attacks such as

stealing sensitive user input. For example, based on the

inferred UI states, we can further break the GUI integrity

by carefully exploiting the designed functionality that al-

lows UI preemption, which is commonly used by alarm

or reminder apps on Android.

The fundamental reason for such confidentiality

breach is in the Android GUI framework design, where

every UI state change can be unexpectedly observed

through publicly accessible side channels. Specifically,

the major enabling factor is a newly-discovered shared-

memory side channel, which can be used to detect win-

dow events in the target application. This side channel

exists because shared memory is commonly adopted by

window managers to efficiently receive window changes

or updates from running applications. For more details,

please refer to §2.1 where we summarize the design and

implementation of common window managers, and §3.2
where we describe how shared memory plays a critical

role. In fact, this design is not specific to Android: nearly

all popular OSes such as Mac OS X, iOS, and Windows

also adopt this shared-memorymechanism for their win-

1

dow managers. Thus, we believe that our attack on An-

droid is likely to be generalizable to other platforms.

Since the window manager property we exploit has no

obvious vulnerabilities in either design or implementa-

tion, it is non-trivial to construct defense solutions. In §9,
we discuss ways to eliminate the identified side channels,

and also suggest more secure alternative system designs.

Our discovered Activity inference attack enables a

number of serious follow-up attacks including (1) Ac-

tivity hijacking attack that can unnoticeably hijack

the UI state to steal sensitive user input (e.g., lo-

gin credentials), and (2) camera peeking attack that

captures sensitive camera images shot by the user

(e.g., personal check photos for banking apps). We

have fully designed and implemented these attacks and

strongly encourage readers to view several short video

demos at https://sites.google.com/site/

uistateinferenceattack/demos [6].

Furthermore, we demonstrate other less severe but

also interesting security consequences: (1) existing at-

tacks [5, 7–10] can be enhanced in stealthiness and ef-

fectiveness by providing the target UI states; (2) user be-

havior can be inferred through tracking UI state changes.

Previous work has demonstrated other interesting An-

droid side-channel attacks, such as inferring the web

pages a user visits [11] as well as the identity, loca-

tion, and disease information of users [12]. However,

these attacks are mostly application-specific with limited

scope. For instance, Memento [11] only applies to web

browsers, and Zhou et al. [12] reported three side chan-

nels specific to three different apps. In contrast, the UI

state concept in this paper applies generally to all An-

droid apps, leading to not only a larger attack coverage

but also many more serious attacks, such as the Activity

hijacking attack which violates GUI integrity.

The contributions of this paper are as follows:

• We formulate the general UI state inference attack

that violates a weaker form of GUI confidentiality, aimed

at exposing the running UI states of an application. It ex-

ploits the unexpected interaction between the design and

implementation of the GUI framework (mainly the win-

dow manager) and a newly-discovered shared-memory

side channel.

• We design and implement the Android version of

this attack and find an accuracy of 80–90% in determin-

ing the foreground Activity for 6 out of 7 popular apps.

The inference itself does not require any permissions.

• We develop several attack scenarios using the UI

state inference technique and demonstrate that an at-

tacker can steal sensitive user input and sensitive camera

images shot by the user when using Android apps.

For the rest of the paper, we first provide the attack

background and overview in §2. The newly-discovered

side channel andActivity transition detection are detailed

in §3, and based on that, the Activity inference technique
is described in §4. In §5, we evaluate this attack with

popular apps, and §6, §7 and §8 show concrete follow-

up attacks. We cover defense in §9, followed by related

work in §10, before concluding in §11.

2 Background and Overview

2.1 Background: Window Manager

Window manager is system software that interacts with

applications to draw the final pixels from all application

windows to the frame buffer, which is then displayed

on screen. After evolving for decades, the most recent

design is called compositing window manager, which is

used virtually in all modern OSes. Unlike its predeces-

sors, which allow individual applications to draw to the

frame buffer directly, a compositing windowmanager re-

quires applications to draw the window content to off-

screen buffers first, and use a dedicated window compos-

itor process to combine them into a final image, which is

then drawn to the frame buffer.

Client-drawn and server-drawn buffer design. There

are two types of compositing window manager design,

as shown in Fig. 1. In this figure, client and server re-

fer to the application and the window compositor1 re-

spectively. In the client-drawn buffer design, the appli-

cations draw window content to off-screen buffers, and

use IPC to communicate these buffers with the server,

where the final image is composited and written to the

frame buffer. This design is very popular and is used in

Mac OSX, iOS,Windows, Android, andWayland for the

future Linux [13, 14]. In the server-drawn buffer design,

the main difference is that the off-screen buffers are al-

located and drawn by the window compositor instead of

by the applications. Applications send commands to the

window compositor to direct the drawing process. Only

the X window system on the traditional Linux and Mir

for the future Linux [15] use this design.

Both designs have their advantages. The client-drawn

buffer design provides better isolation between applica-

tions, more flexible window drawing and more balanced

overhead between the client and the server. For the

server-drawn buffer design, the server has control over

all applications’ window buffers, which is better for cen-

tralized resource management. Interestingly, some prior

work choose the former to enhance GUI security [1], but

we find that it actually enables our attacks (shown in §3).

2.2 Background: Android Activity and Ac-

tivity Transition

In Android, the UI state our attack infers is called Activ-

ity. An Activity provides a user interface (UI) for user in-

1For traditional Linux the server is an X server, and the window

compositor is a separate process talking to the X server. In Fig. 1 we

refer to the combination of them as the window compositor.

2

https://sites.google.com/site/uistateinferenceattack/demos
https://sites.google.com/site/uistateinferenceattack/demos

Off-screen

buffer 1

Off-screen

buffer 2

Off-screen

buffer 3

Window

compositor

Draw

Draw

Draw

Final

image
IPC

IPC

IPC

Off-screen

buffer 1

Off-screen

buffer 3

Off-screen

buffer 2

Window compositor

App1
Final

image

IPC

IPC

IPC

Draw Draw

Draw

(a) (b)

App2

App3

App1

App2

App3

Frame

buffer
Frame

buffer

Figure 1: Two types of compositing window manager design: (a) client-

drawn buffer design, and (b) server-drawn buffer design. Client refers to the

application, and server refers to the window compositor.

SendMoney

Activity
Choose

Recipient

Activity

AddRecipient

Activity

ChooseRecipient

NotificationActivity

SendMoney

Verification

Activity

21 3

4

5
6

7

8

Figure 2: Activities involved in send-

ing money in AndroidChase app. The

numbers denote the action order.

teractions, and is typically a full-screen window serving

as a functionality unit in Android. We denote Activities

as a,b, ..., and the set of Activities for an app as A. Due

to security concerns, by default apps cannot know which

Activity is currently shown in the foreground unless they

are the owners or the central Activity manager.

An Activity may display different content depending

on the app state. For instance, a dictionary app may have

a single “definition” Activity showing different texts for

each word lookup. We call these distinct displays View-

States, and denote the set of them for Activity a as a.VS.

Activity transition. In Android, multiple Activities typ-

ically work together and transition from one to another

to support the functionality of an app as a whole. An

example is shown in Fig. 2. During a typical transition,

the current foreground Activity pauses and a new one is

created. A Back Stack [16] storing the current and past

Activities is maintained by Android. To prevent exces-

sive memory usage, at any point in time, only the top

Activity has its window buffer allocated. Whenever an

Activity transition occurs, the off-screen buffer alloca-

tion for the new Activity window and the deallocation

for the existing Activity window take place.

Activity transitions can occur in two ways: a new Ac-

tivity is created (create transition), or an existing one re-

sumes when the BACK key is pressed (resume transi-

tion), corresponding to push and pop actions in the Back

Stack. Fig. 3 shows the major function calls involved

in these two transition types. Both transition types start

by pausing the current foreground Activity, and then

launching the new one. During launch, the create transi-

tion calls both onCreate() and onResume(), while

the resume transition only calls onResume(). Both

onCreate() and onResume() are implemented by

the app. After that, performTraversal() is called,

in which measure() and layout() calculate the

sizes and locations of UI components, and draw() puts

them into a data structure as the new Activity UI. Fi-

nally, the create transition pushes the new Activity into

the Back Stack and stops the current one, while the re-

sume transition pops the current one and destroys it.

Activity transition graph. Immediately after a tran-

Perform-
Pause()

onPause()

performLaunch()

onCreate()

onResume()

performTr-

aversal()

measure()

layout()

draw()

performStop()

onStop()

performLaunch()

onResume()

c

r

c

r
performDestroy()

onDestroy()

Figure 3: The function call trace for create (denoted by

c) and resume (denoted by r) transitions.

sition, the user lands on one of the ViewStates of the

new Activity, which we call a LandingState. We de-

note the set of LandingStates for Activity a as a.LS,

and a.LS ⊆ a.VS. Individual LandingStates are denoted

as a.ls1,a.ls2, Activity transition is a relationship

a.VS→ b.LS,a,b ∈ A. As the ViewState before the tran-

sition is not of interest in this study, we simplify it to

a→ b.LS, which forms the graph in Fig. 4. Note that our

definition is slightly different from that in previous work

[17] as the edge tails in our graph are more fine-grained:

they are LandingStates instead of Activities.

2.3 Attack Overview

Our proposed UI state inference is a general side-channel

attack against GUI systems, aimed at exposing the run-

ning UI state of an application at the window level, i.e.,

the currently displayedwindow (without knowing the ex-

act pixels). To achieve that, the attack exploits a newly-

discovered shared-memory side channel, which may ex-

ist in nearly all popular GUI systems used today (shown

in §3). In this paper, we focus on the attack on the An-

droid platform: Activity inference attack. We expect the

technique to be generalizable to all GUI systems with the

same window manger design as that in Android, such as

the GUI systems in Mac OS X, iOS, Windows, etc.

Threat model. We require an attack app running in the

background on the victim device, which is a common re-

quirement for Android-based attacks [7–11, 18]. To en-

sure stealthiness, the app should be low-overhead, not

draining the battery too quickly. Also, as the purpose

of permissions is to alert users to privacy- or security-

invasive apps [19], the attack should not require any ad-

ditional permissions besides a few very common ones,

for example the INTERNET permission.

3

c

c.ls1

a

a.ls1 a.ls2 a.ls3

c.ls2

b

b.ls1

d

d.ls1

Figure 4: An example Activity transition

graph. Solid and dotted edges denote cre-

ate and resume transitions respectively.

Activity

transition

detection

Activity (UI state)

inference Camera peeking attack

Activity hijacking attack

Enhance existing attacks

Activity

transition period

Shared-

memory side

channels UI state based attacks

Other side channels

such as CPU utilization

time, network, etc.

Monitor user behavior

Figure 5: Activity inference attack overview.

General steps. As shown in Fig. 5, Activity inference is

performed in two steps:

1. Activity transition detection: we first detect an Ac-

tivity transition event, which reports a single bit of infor-

mation on whether an Activity transition just occurred.

This is enabled by the newly-discovered shared-memory

side channel. As shown later in §3.3, the change ob-

served through this channel is a highly-distinct “signal”.

2. Activity inference: upon detecting an Activity tran-

sition, we need to differentiate which Activity is entering

the foreground. To do so, we design techniques to train

the “signature” for the landing Activity, which roughly

characterizes its starting behavior through publicly ob-

servable channels, including the new shared-memory

side channel, CPU utilization time, and network activity

(described in §4).

Finally, using our knowledge of the foreground Activ-

ity in real time, we develop novel attacks that can effec-

tively steal sensitive user input as well as other informa-

tion as detailed in §6, §7 and §8.

3 Shared-Memory Side Channel and Ac-

tivity Transition Detection

In this section, we first report the newly-discovered side

channel along with the fundamental reason for its exis-

tence, and then detail the transition detection technique.

3.1 Shared-Memory Side Channels

As with any modern OS design, the memory space of

an Android app process consists of the private space

and the shared space. Table 1 lists memory counters in

/proc/pid/statm and their names used in the Linux com-

mand top and the Linux source code. Inherited from

Linux, these counters can be freely accessed without any

privileges. With these counters, we can calculate both the

private and shared sizes for virtual memory and physical

memory. In this paper, we leverage mm->shared_vm

and file_rss as our shared-memory side channels,

the former for virtual memory and the latter for phys-

ical memory. For convenience, we refer to them as

shared vm and shared pm. In this section, we focus on

using shared vm to detect Activity transition events. In

§4.1, we use both shared vm and shared pm to infer An-

droid Content Provider usages in the Activity inference,

which is another use case we discovered.

3.2 Android Window Events and Shared-

Memory Side Channel

We find that shared vm changes are correlated with An-

droid window events. In this section, we detail its root

cause and prevalence in popular GUI systems.

Shared-memory IPC used in the Android window

manager. As mentioned earlier in §2.1, Android adopts

the client-drawn buffer design, where each client (app)

needs to use a selected IPC mechanism to communicate

their off-screen buffers with the window compositor. In

practice, we find that shared memory is often used, since

it is the most efficient channel (without large memory

copy overhead). On Android, when an Activity tran-

sition occurs, shared vm size changes can be found in

both the app process and the window compositor process

named SurfaceFlinger. More investigations into Android

source code reveal that the size changes correspond to the

allocations and deallocations of a data structure named

GraphicBuffer, which is the off-screen buffer in Android.

In the Android window drawing process shown in Fig. 3,

GraphicBuffer is shared between the app process and the

SurfaceFlinger process using mmap() at the beginning

of draw() in performTraversal().

Interestingly, this implies that if we know the Graph-

icBuffer size for a target window, we can detect its al-

location and deallocation events by monitoring the size

changes of shared vm. Since the GraphicBuffer size is

proportional to the window size, and an Activity is a full-

screen window, its GraphicBuffer size is fixed for a given

device, which can be known beforehand.

It is noteworthy that different from private memory

space, shared memory space changes only when shared

files or libraries are mapped into the virtual memory.

This keeps our side channel clean; as a result, the

changes in shared vm are distinct with minimum noise.

Shared-memory side-channel vulnerability on other

OSes. To understand the scope, we investigate other

OSes besides Android. On Linux, Wayland makes it

clear that it uses shared buffers as IPC between the win-

4

Item in /proc/- Description Name Name in Linux

pid/statm in top source code

VmSize Total virtual memory size VIRT mm->total vm

drs Private virtual memory size / mm->total vm-

mm->shared vm

resident Total physical memory size RES file rss+anon rss

share Shared physical memory size SHR file rss

Table 1: Android/Linux memory counters in /proc/pid/statm and their

names in the Linux command top, and the Linux source code (obtained

from task statm() in task mmu.c). The type of mm is mm struct.

time

shared_vm

Sampling

pulse

0
Sampling

time

shared_vm

0

Figure 6: A successful sampling of an

Activity transition signal for the Activ-

ity transition detection

dow compositor and clients to render the windows [13].

Similar to Android, attackers can use /proc/pid/statm to

get the shared memory size and detect window events.

Mac OS X, iOS and Windows neither explain this IPC

in their documentations nor have corresponding source

code for us to explore, so we did some reverse engi-

neering using memory analysis tools such as VMMap

[20]. On Windows 7, we found that whenever we open

and close a window, a memory block appears and dis-

appears in the shared virtual memory space of both the

window compositor process, Desktop Window Manager,

and the application process. Moreover, the size of this

memory block is proportional to the window size on the

screen. This strongly implies that this memory block is

the off-screen buffer and shared memory is the IPC used

for passing it to the window compositor. Thus, using

the GetProcessMemoryInfo() API that does not

require privilege, similar inference may be possible.

Mac OS X is similar to Windows except that the mem-

ory block in shared memory space is named CG back-

ing store. On iOS this should be the same as Mac

OS X since they share the same window compositor,

Quartz Compositor. But on Mac OS X and iOS, only

system-wide aggregated memory statistics seem avail-

able through host statistics() API, which may

still be usable for this attack but with a less accuracy.

3.3 Activity Transition Detection

With the above knowledge, detecting Activity transition

is simply a matter of detecting the correspondingwindow

event pattern by monitoring shared vm size changes.

The left half of Fig. 6 shows the typical shared vm

changing pattern for an Activity transition, and we name

it Activity transition signal. In this signal, the posi-

tive and negative spikes are increases and decreases in

shared vm respectively, corresponding to GraphicBuffer

allocations and deallocations. The GraphicBuffer allo-

cation for the new Activity usually happens before the

deallocation for the current Activity, which avoids user-

visible UI delays. Since Activity windows all have full-

screen sizes, the increase and decrease amount are the

same. With the multiple buffer mechanism for UI draw-

ing acceleration on Android [21], 1–3 GraphicBuffer al-

locations or deallocations can be observed during a sin-

gle transition, resulting in multiple spikes in Fig. 6. The

delay between allocations is usually 100–500 ms due to

measurement and layout computations, while the delay

between deallocations is usually under 10 ms. An exam-

ple result of a successful sampling is shown on the right

half of Fig. 6 with the sampling period being 30–100ms.

To detect this signal, we monitor the changes of

shared vm, and conclude an Activity transition period by

observing (1) both full-screen size shared vm increase

and decrease events, (2) the idle time between two suc-

cessive events is longer than a threshold idle thres. A

successful detection is shown on the top of Fig. 10.

We evaluate this method and find a very low false posi-

tive rate, which is mainly because the shared vm channel

is clean. In addition, it is rare that the following unique

patterns happen randomly in practice: (1) the shared vm

increase and decrease amounts are exactly the same as

the full-screen GraphicBuffer size (920 pages for Sam-

sung Galaxy S3); (2) both the increase and decrease

events occur very closely in time.

On the other hand, this method may have false neg-

atives due to a cancellation effect — when an increase

and a decrease are in the same sampling period, they can-

cel each other and the shared vm size stays unchanged.

Raising the sampling rate can overcome this problem, but

at the cost of increased sampling overhead. Instead, we

solve the problem using the number of minor page faults

(minflt), in /proc/pid/stat. When allocating memory for a

GraphicBuffer, the physical memory is not actually allo-

cated until it is used. At time of use, the same number of

pages faults as the allocated GraphicBuffer page size is

generated. Since minflt monotonically increases as a cu-

mulative counter, we can use it to deduce the occurrence

of a cancellation event.

4 Activity Inference

After detecting an Activity transition, we infer the iden-

tity of the new Activity using two kinds of information:

1. Activity signature. Among functions involved in

the transition (as shown in Fig. 3), onCreate() and

onResume() are defined in the landing Activity, and

the execution of performTraversal() depends on

the UI elements and layout in its LandingState. Thus, ev-

ery transition has behavior specific to the landing Activ-

5

Trigger Activity

transitions

automatically Collect

transition

feature data

Activity

signature

Transition

model

Activity

inference

result

Automated

transition tool

Training phase:

Attacking phase:

Mobile user

Trigger Activity

transitions

Collect

transition

feature data

Activity

transition

graph

Figure 7: Overview of the Activity inference

 0

 200

 400

 600

 800

 1000

 1200

c1 c2 c3 c4 r1 r2

C
P

U
 U

ti
liz

a
ti
o

n
 t

im
e

 (
m

s
)

Activity Transitions

onCreate()
onResume()

measure()
layout()
draw()
other

Figure 8: CPU utilization time

breakdown for 6 Activity tran-

sitions in WebMD

 0

 20

 40

 60

 80

 100

 470 480 490 500 510 520 530

C
D

F
 (

%
)

First Packet Size (byte)

Figure 9: CDF of the first

packet sizes for various Land-

ingStates in H&R Block

ity, giving us opportunities to infer the landing Activity

based on feature data collected during the transition.

2. Activity transition graph. If the Activity transition

graph of an app is sparse, once the foregroundActivity is

known, the set of the next candidate Activities is limited,

which can ease the inference difficulty. Thus, we also

consider Activity transition graph in the inference.

Fig. 7 shows an overview of the Activity inference pro-

cess. This process has two phases, the training phase and

the attacking phase. The training phase is executed first

offline. We build a tool to automatically generate Activ-

ity transitions in an app, and at the same time collect fea-

ture data to build the Activity signature and construct the

Activity transition graph. In the attacking phase, when a

user triggers an Activity transition event, the attack app

first collects feature data like in the training phase, then

leverages Activity signature and a transition model based

on the Activity transition graph to perform inference.

4.1 Activity Signature Design

During the transition, we identify four types of features

described below and use them jointly as the signature.

Input method events. Soft keyboard on smartphones is

commonly used to support typing in Activities. It usually

pops up automatically at the landing time. There is also a

window event for the keyboard process, which again can

be inferred through shared vm. This is a binary feature

indicating whether the LandingState requires typing.

Content Provider events. Android component Content

Provider manages access to a structured set of data using

SQLite as backend. To deliver content without memory

copy overhead, Android uses anonymous shared mem-

ory (ashmem) shared by the Content Provider and the app

process. Similar to the compositing window manger de-

sign, by monitoring shared vm, we can detect the query

and release events of the Content Provider. Specifically,

in Android design, we found that the virtual memory size

of ashmem allocated for a Content Provider query is a

fixed large value, e.g., 2048 KB for Android 4.1, which

creates a clear signal. Usually its content only consti-

tutes a small portion. To know the content size, we also

monitor shared pm introduced in §3.1, which indicates

the physical memory allocation size for the content.

The Content Provider is queried in onCreate() and

onResume() to show content in the landing Activity.

For signature construction, we collect Content Provider

query events and the corresponding content size by mon-

itoring shared vm and shared pm. As shared pmmay be

noisy, we use a normal distribution to model the size.

CPU utilization time. Fig. 8 shows the CPU utilization

time collected by DDMS [22] for each function in Fig. 3

during the transition. For the 6 transitions, c and r denote

create and resume transition, and 1–4 denote 4 different

LandingStates. The time collected may be inflated due

to the overhead added by DDMS profiling. The figure

shows that CPU utilization time spent in each function

differs across distinct LandingStates due to distinct draw-

ing complexity, and for the same LandingState, resume

transitions usually take less time than create ones since

the former lacks onCreate(). Thus, the CPU utiliza-

tion time can be used to distinguish Activity transitions

with different transition types and LandingStates.

To collect data for this feature, we record the

user space CPU utilization time value (utime), in

/proc/pid/stat for the Activity transition. Similar to pre-

vious work [23, 24], we find that the value for the same

repeated transition roughly follows normal distribution.

Thus, we model it using a normal distribution.

Network events. For LandingStates with content from

the network, network connection(s) are initiated in

performLaunch() during the transition. For a given

LandingState, the request command string such as HTTP

GET is usually hard-coded, with only minor changes

from app states or user input. This leads to similar size

of the first packet immediately after the connection estab-

lishment. We do not use the response packet size, since

the result may be dynamically generated. Fig. 9 shows

the CDF of the first packet sizes for 14 Activity Land-

ingStates in H&R Block. As shown, most distributions

are quite stable, with variations of less than 3 bytes.

To capture the first packet size, we monitor the send

packet size value in /proc/uid stat/uid/tcp snd. We con-

6

time

∆ shared_vm

time

Input method

feature

Content

Provider

feature

Activity

transition

signal:

Network

event

feature

CPU utilization time feature

Activity transition period

Activity

inference

starts here

idle_thres

Activity

signature

features:

Figure 10: Signature feature data collection timeline.

currently monitor /proc/net/tcp6, which contains net-

work connection information such as the destination IP

address and app uid for all apps. We use the uid to find

the app which the connection belongs to, and use time

correlation to match the first packet size to the connec-

tion. For the LandingState with multiple connections,

we use the whois IP address registry database [25] to get

the organization names and thus distinguish connections

with different purpose. To read first packet sizes accu-

rately, we raise the sampling rate to be 1 in 5 ms during

the transition period. Since this period usually lasts less

than 1 second, the overall sampling overhead is still low.

For signature construction, we keep separate records

for connections with different organization names and

occurrence ordering. For each record, we use the first

packet size appearance frequencies to calculate the prob-

ability for this feature.

Fig. 10 shows the data collection timeline for these

feature data and their relationship with the shared vm

signal. The Content Provider event feature is collected

before the first shared vm increase, and the input method

event feature is collected after the first shared vm de-

crease. Network events are initiated before the first

shared vm increase, while the first packet size is usually

captured after that. The CPU utilization time feature is

collected throughout the whole transition period.

With these four types of features, our signature prob-

ability Prob(〈·,a.lsi〉), a ∈ A, a.lsi ∈ a.LS is obtained

by computing the product of each feature’s probability,

based on the observation that they are fairly independent.

In §5, we evaluate our signature design with these four

features both jointly and separately.

4.2 Transition Model and Inference Result

Transition model. In our inference, the states (i.e., Ac-

tivities) are not visible, so we use Hidden MarkovModel

(HMM) to model Activity transitions. We denote the

foreground Activity trace with n Activity transitions as

{a0,a1, ...,an}. The HMM can be solved using the

Viterbi algorithm [26] with initialization Prob({a0}) =
1
|A| , and inductive steps Prob({a0, ...,an}) = argmax

an.lsi∈an.LS

Prob(〈·,an.lsi〉)Prob(an|an−1)Prob({a0, ...,an−1}).

In inductive steps, Prob(〈·,an.lsi〉) denotes the

probability calculated from Activity signature, and

Prob(an|an−1) denotes the probability that an−1 transi-

tions to an. If an−1 has x egress edges in the transition

graph, Prob(an|an−1) =
1
x
, assuming that user choices

are uniformly distributed.

The typical Viterbi algorithm [26] calculates the most

likely Activity trace {a0,a1, ...,an}, with computation

complexity O((n + 1)|A|2). However, for our case,

only the new foreground Activity an is of interest, so

we modify the Viterbi algorithm by only calculating

Prob({an−c+1, ...,an}), where c is a constant. This re-

duces the computation complexity to O(c|A|2). In our

implementation, we choose c= 2.

Inference result. After inference, our attack outputs a

list of Activities in decreasing order of their probabilities.

4.3 Automated Activity Transition Tool

By design, both the Activity signature and Activity tran-

sition graph are mostly independent of user behavior;

therefore, the training phase does not need any victim

participation. Thus, we also develop an automated tool

to accelerate the training process offline.

Implementation. Our tool is built on top of

ActivityInstrumentationTestCase, an An-

droid class for building test cases of an app [27]. The

implementation has around 4000 lines of Java code.

Activity transition graph generation with depth-first

search. To generate the transition graph, we send and

record user input events to Activities to drive the app in

a depth-first search (DFS) fashion like the depth-first ex-

ploration described in [17]. The DFS graph has View-

States as nodes, user input event traces as edges (create

transitions), and the BACK key as the back edge (resume

transitions). Once the foregroundActivity changes, tran-

sition information such as the user input trace and the

landing Activity name is recorded. The graph generated

is in the form of the example shown in Fig. 4.

Activity transition graph traversal. With the transi-

tion graph generated, our tool supports automatic graph

traversals in deterministic and randommodes. In the ran-

dom mode, the tool chooses random egress edges during

the traversal, and goes back with some probabilities.

Tool limitations. We assume Activities are independent

from each other. If changes in one Activity affect Ac-

tivity transition behavior in another, our tool may not be

aware of that, leading to missed transition edges. For

some user input such as text entering, the input genera-

tion is only a heuristic and cannot ensure 100% cover-

age. To address such limitations, some human effort is

involved to ensure that we do not miss the important Ac-

tivities and ViewStates.

7

Application Activity Activity transitions Activity LandingStates

name number create resume Total Graph Average egress Number w/ content w/ input w/ network

type type density edge per Activity provider method

WebMD 38 274 129 403 14.0% 10.0 92 18.7% 15.3% 70.3%

Chase 34 257 39 296 17.4% 8.71 50 4% 0.00% 44.0%

Amazon 19 209 190 399 55.3% 21.0 39 0.00% 7.69% 74.3%

NewEgg 55 242 253 495 8.2% 9.0 80 0.00% 8.75% 97.5%

GMail 7 10 10 20 20.4% 2.86 17 0.00% 5.71% 5.8%

H&R Block 20 58 39 97 12.1% 4.85 42 0.00% 2.3% 100%

Hotel.com 24 29 41 70 6.1% 2.92 35 0.00% 2.8% 100%

Table 2: Characteristics of Activity, Activity LandingStates and Activity transitions of selected apps (numbers are

obtained manually as the ground truth). The CPU utilization time feature is omitted since it is always available.

Application Activity transition detection Activity inference accuracy

name Accuracy FP FN Top 1 cand. Top 2 cand. Top 3 cand.

WebMD 99% 0.50% 1.0% 84.5% 91.4% 93.6%

Chase 99.5% 0.53% 0.63% 83.1% 91.8% 95.7%

Amazon 99.3% 4% 0.7% 47.6% 65.6% 74.1%

NewEgg 98.4% 0.1% 1.6% 85.9% 92.6% 96.3%

GMail 99.2% 0% 0.8% 92.0% 98.3% 99.3%

H&R Block 97.7% 2% 2.3% 91.9% 96.7% 98.1%

Hotel.com 96.5% 0.6% 3.5% 82.6% 92.7% 96.7%

Table 3: Activity transition detection and inference result for selected apps.

All results are generated using Activity traces with more than 3000 transitions.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Top 1 Candidate Accuracy (%)

WebMD
Chase

Amazon
NewEgg

Gmail
H&R Block
Hotel.com

Figure 11: CDF of the average ac-

curacy for top 1 candidates

5 Evaluation

In this section, we evaluate (1) the effectiveness of the

automated Activity transition tool, (2) the performance

of the Activity inference, and (3) the attack overhead.

Attack implementation. We implement the Activity in-

ference attack with around 2300 lines of C++ code com-

piled with Android NDK packaged in an attack app.

Data collection. We use the automated tool in §4.3 to

generate Activity transitions. We use random traversals

to simulate user behavior, and deterministic traversals in

controlled experiments for training and parameter selec-

tion, e.g., the sampling rate. We run all experiments on

Samsung Galaxy S3 devices with Android 4.2. We do

not make use of any device-specific features and expect

our findings to apply to other Android phones.

App selection and characteristics. In our experiments,

we choose 7 Android apps, WebMD, GMail, Chase,

H&R Block, Amazon, NewEgg, and Hotel.com, all of

which are popular and also contain sensitive information.

Table 2 characterizes these apps according to properties

relevant to our attack techniques. NewEgg and GMail

have the highest and the lowest number of Activities, and

Amazon has the highest graph density. Chase app is the

only one with no automatic soft keyboard pop-up during

the transition among these apps. The Content Provider

is only extensively used by WebMD. Except GMail, the

percentage of the network feature is usually high.

5.1 Activity Transition Tool Evaluation

For Activity transition graph generation, the tool typi-

cally spends 10 minutes to 1 hour on a single Activity,

depending on the UI complexity. For all apps except

WebMD, the generated transition graphs are exactly the

same as the ones we generate manually. The transition

graph of WebMD misses 4 create transition edges and 3

resume transition edges, which is caused by dependent

Activity issues described in §4.3. Our tool generates no
fake edges for all selected apps.

5.2 Activity Inference Attack Evaluation

Evaluation methodology. We run the attack app in the

background while the tool triggers Activity transitions.

The triggered Activity traces are recorded as the ground

truth. To simulate the real attack environment, the at-

tack is launched with popular apps such as GMail and

Facebook running in the background. For the Activity

transition detection, we measure the accuracy, false pos-

itive (FP) and false negative (FN) rates. For the Activity

inference, we consider the accuracy for the top N candi-

dates — the inference is considered correct if the right

Activity is ranked top N on the result candidate list.

5.2.1 Activity Transition Detection Results

Aggregated Activity transition detection results are

shown in columns 2–4 in Table 3. For all selected apps,

the detection accuracies are more than 96.5%, and the FP

and FN rates are both less than 4%.

When changing the sampling period from 30 to 100

ms in our experiment, for all apps the increases of FP and

FN rates are no more than 5%. This shows a small im-

pact of the sampling rate on the detection; thus, a lower

sampling rate can be used to reduce sampling overhead.

We also measure Activity transition detection delay,

which is the time from the first shared vm increase to

the moment when the Activity transition is detected in

8

Fig. 10. For all apps, 80% of the delay is shorter than

1300 ms, which is fast enough for Activity tracking.

5.2.2 Activity Inference Results

The aggregated Activity transition inference result is

shown in column 5–7 in Table 3. For all apps except

Amazon, the average accuracies for the top 1 candidates

are 82.6–92.0%,while the top 2 and top 3 candidates’ ac-

curacies exceed 91.4% and 93.6%. Amazon’s accuracy

remains poor, and can achieve 80% only when consid-

ering the top 5 candidates. In the next section, we will

investigate more into the reason of these results.

Fig. 11 shows the CDF of the accuracy for top 1 candi-

dates per Activity in the selected apps. Except Amazon,

all apps have more than 70% of Activities with more than

80% accuracy. For WebMD, NewEgg, Chase and Ho-

tel.com, around 20% Activities have less than 70% accu-

racy. For these Activities, they usually lack some signa-

ture features, or the features they have are too common to

be distinct enough. However, such Activities usually do

not have sensitive data due to a lack of important UI fea-

tures such as text fields for typing, and thus are not rele-

vant to the proposed attacks. For example, in Hotel.com,

the two Activities with less than 70% accuracy are Coun-

trySelectActivity for switching language and Opinion-

LabEmbeddedBrowserActivity for rating the app.

5.2.3 Breakdown Analysis and Discussion

To better understand the performance results, we break

down the contributions of each signature feature and the

transition model further. Table 4 shows the decrease of

the average accuracy for top 1 candidates if leaving out

certain features or the transition model. Without the CPU

utilization time feature, the accuracy decreases by 36.2%

on average, making it the most important contributor.

Contributions from the network feature and the transi-

tion model are also high, which generally improves the

accuracy by 12–30%. As low-entropy features, the Con-

tent Provider and the input method contribute under 5%.

Thus, the CPU utilization time, the network event and

the transition model are the three most important contrib-

utors to the final accuracy. Note that though the Content

Provider and input method features have lower contribu-

tions, we find that the top 2 and top 3 candidates’ accu-

racies benefit more from them. This is because they are

more stable features, and greatly reduce the cases with

extremely poor results due to the high variance in the

CPU utilization time and the network features.

Thus, considering that the CPU utilization time is al-

ways available, apps with a high percentage of network

features, or a sparse transition graph, or both, should

have a high inference accuracy. In Table 2 and Table 3,

this rule applies to all the selected apps except Amazon.

Application ∆ Accuracy for top 1 candidates

name no IM no CP no Net no CPU no HMM

WebMD -3.8% -2.6% -19.1% -25.7% -16.6%

Chase -0% -2.0% -12.8% -71.5% -28.7%

Amazon -10.2% -0% -3.2% -32.0% -5.9%

NewEgg -0.5% -0% -31.7% -20.0% -13.0%

GMail -13.7% -0% -0.9% -58.6% -19.4%

H&RBlock -0.7% -0% -30.7% -27.9% -16.5%

Hotel.com -0.3% -0% -28.8% -17.9% -12.2%

Table 4: Breakdown of individual contributions to accu-

racy. IM, CP, Net, and CPU stand for input method, Con-

tent Provider, network event and CPU utilization time.

Amazon has a low accuracy mainly because it bene-

fits little from either the transition model or the network

event feature due to high transition graph density and in-

frequent network events. The reason for the high transi-

tion graph density is that in Amazon each Activity has

a menu which provides options to transition to nearly

all other Activities. The infrequent network events are

due to its extensively usage of caching, presumably be-

cause much of its content is static and cacheable. How-

ever, we note that many network events are typically not

cacheable, e.g., authentication events and dynamic con-

tent (generated depending on the user input and/or the

context). Compared to the other 6 apps, we find that

these two properties for Amazon are not typical, not

present in another shopping app NewEgg.

The Amazon app case indicates that our inference

method may not work well if certain features are not suf-

ficiently distinct, especially the major contributors such

as the transition model and the network event feature.

To better understand the general applicability of our in-

ference technique, a more extensive measurement study

about the Activity and Activity transition graph proper-

ties is needed, which we leave as future work.

5.2.4 Attack overhead

We use the Monsoon Power Monitor [28] to measure

the attack energy overhead. Using an Activity trace of

WebMD on the same device, with our attack in the back-

ground the power level increases by 2.2 to 6.0% when

the sampling period changes from 100 to 30 ms.

6 Enabled Attack: Activity Hijacking

In this section, based on the UI state tracking, we de-

sign a new Android attack which breaches GUI integrity

— Activity hijacking attack — based on a simple idea:

stealthily inject into the foreground a phishing Activity

at the right timing and steal sensitive information a user

enters, e.g., the password in login Activity.

Note that this is not the first attack popping up a phish-

ing Activity to steal user input, but we argue that it is the

first general one that can hijack any Activities during an

app’s lifetime. Previous study [29] pops up a fake login

9

Activity

1

Foreground

Activity

Activity

2

Waiting

for Login

Activity

Step 1

Login

Activity

appears,

start

hijacking!

Phishing

Login

Activity

Step 2

Login

Activity

Phishing

Login

Activity

Go back

to the

victim

Login

Activity

Login

Activity

Step 3

Phishing

Login

Activity

Foreground

Activity

Foreground

Activity

Figure 12: General steps of the Activity hijacking attack

time

∆ shared_vm

time

Early

inference

Activity entering

animation

Inject phishing

Activity with

no animation

Activity

transition

period starts

Activity

hijacking

attack:

Activity

transition

signal:

Activity

injection

delay

Original

inference

starts here

t0 t1 t2

Figure 13: Activity injection process with early inference

Activity every time the attack app detects the launching

of the target app, tricking users into entering login cre-

dentials. However, this can easily cause user suspicion

due to the following: (1) most apps nowadays do not re-

quire login right after the app starts, even for banking

apps like Chase; (2) the attack requires suspicious per-

missions such as BOOT COMPLETED to be notified of

system boot, based on the assumption that login is ex-

pected after the system reboot. With the Activity infer-

ence attack, we no longer suffer from these limitations.

6.1 Activity Hijacking Attack Overview

Fig. 12 shows the general steps of Activity hijacking at-

tack. In step 1, the background attack app uses Activity

inference to monitor the foreground Activity, waiting for

the attack target, for example, LoginActivity in Fig. 12.

In step 2, once the Activity inference reports that the

target victim Activity, e.g., LoginActivity, is about to

enter the foreground, the attack app simultaneously in-

jects a pre-prepared phishing LoginActivity into the fore-

ground. Note that the challenge here is that this intro-

duces a race condition where the injected phishing Ac-

tivity might enter the foreground too early or too late,

causing visual disruption (e.g., broken animation). With

carefully designed timing, we prepare the injection at the

perfect time without any human-observable glitches dur-

ing the transition (see video demos [6]). Thus, the user

will not notice any differences, and continue entering the

password. At this point, the information is stolen and the

attack succeeds.

In step 3, the attack app ends the attack as unsuspi-

ciously as possible. Since the attack app now becomes

the foreground app, it needs to somehow transition back

to the original app without raising much suspicion.

6.2 Attack Design Details

Activity injection. To understand how it is possible to

inject an Activity from one app into the foreground and

preempt the existing one, we have to understand the de-

sign principle of smartphone UI. If we think about apps

such as the alarm and reminder apps, they indeed require

the ability to pop up a window and preempt any fore-

ground Activities. In Android, such functionality is sup-

ported in two ways without requiring any permissions:

(1) starting an Activity with a restricted launching mode

“SingleInstance” [30]; (2) starting an Activity from an

Android broadcast receiver [31]. In our design, since the

timing of the injection is critical, we choose the former

as it can be launched 30 ms faster.

UI phishing. To ensure that the phishing Activity’s UI

appears the same as the victim Activity, we disassem-

ble the victim app’s apk using apktool [32] and copy all

related UI resources to the attack app. However, some-

times the Activity UI may have dynamically loaded ar-

eas which are not determined by the UI resources, e.g.,

the account verification image in banking apps. To solve

that, the attacker can make those areas transparent, given

that Android supports partially transparent Activity [33].

Activity transition animation modifying. Since our in-

jection introduces an additional Activity transition which

is racing with the original transition, the animation of

the additional transition would clearly disrupt the flow.

Fortunately, this problem can be solved by disabling the

transition animation (allowed by Android) by modifying

an Activity configuration of the attack app without need-

ing any permissions. This helps the injection become to-

tally seamless, and as will be discussed in §9, enforcing
this animation may be a feasible mitigation of our attack.

Injection timing constraint. For the attack to succeed,

the Activity injection needs to happen before any user in-

teraction begins, otherwise the UI change triggered by it

may be disrupted by the injected Activity. Since the in-

jection with the current inference technique takes quite

long (the injected Activity will show up after around

1300 ms from the first detected shared vm increase as

measured in §5), any user interaction during this period

would cause disruptions. To reduce the delay, we adapt

the inference to start much earlier. As shown in Fig. 13,

we now start the inference as soon as the shared vm de-

crease is observed (roughly corresponding to the Activity

entering animation start time). In contrast, our original

inference starts after the last shared vm increase.

Note that this would limit the feature collection up to

the point of the shared vm decrease, thus impacting the

inference accuracy. Fortunately, as indicated in Fig. 10,

such change does allow the network event feature, the

10

majority of the CPU utilization time features, and the

transition model to be included in the inference, which

are the three most important contributors to the final ac-

curacy as discussed in §5.2.3. Based on our evaluation,

this would reduce the delay to only around 500 ms.

Unsuspicious attack ending. As described in §6.1, in
step 3 we try to transition from the attack app back to the

victim unsuspiciously. Since the phishing Activity now

has the information entered on the screen, it is too abrupt

to directly close it and jump back to the victim. In our

design, we leverage “benign” abnormal events to hide

the attack behavior, e.g., the attack app can show “server

error” after the user clicks on the login button, and then

quickly destroy itself and fall back to the victim.

Deal with cached user data. It is common that some

sensitive data may be cached, thus won’t be entered at all,

e.g., the user name in login Activity. Without waiting for

them to expire, it is difficult to capture any fresh input.

Note that we can simply inject the phishing Activity

with all fields left blank. The challenge is to not alert

the user with any other observable suspicious behavior.

Specifically, depending on the implementation, we find

that the cached user data sometimes show up immedi-

ately in the very first frame of the Activity entering an-

imation (t0 in Fig. 13). Thus, our later injection would

clear the cached fields, which causes visual disruption.

Our solution is to pop up a tailored cache expiration

message (replicating the one from the app), and then

clear such cached data, prompting users to re-enter them.

6.3 Attack Implementation and Evaluation

Implementation. We implement Activity hijacking at-

tack against 4 Activities: H&R Block’s LoginActivity

and RefundInfoActivity for stealing the login creden-

tials and SSN, and NewEgg’s ShippingAddressAddAc-

tivity and PaymentOptionsModifyActivity for stealing

the shipping/billing address and credit card information.

The latter two Activities do not appear frequently in the

check-out process since the corresponding information

may be cached. Thus, to force the user to re-enter them,

our attack injects these two Activities into the check-out

process. The user would simply think that the cached

information has expired. In this case the fake cache ex-

piration messages are not needed, since the attack can

fall back to the check-out process naturally after entering

that information. Attack demos can be found in [6].

Evaluation. The most important metric for our attack is

the Activity injection delay, which is the time from t1 to

t2 in Fig. 13. In Android, it is hard to know precisely the

animation ending time t1, so the delay is measured from

t0 to t2 as an upper bound. In the evaluation the Activity

injection is performed 50 times for the LoginActivity of

H&R Block app, and the average injection delay is 488

ms. Most of the delay time is spent in onCreate()

(242 ms) and performTraverse() (153 ms). From

our experience, the injection is fast enough to complete

before any user interaction starts.

7 Enabled Attack: Camera Peeking

In this section, we show another new attack enabled by

the Activity inference: camera peeking attack.

7.1 Camera Peeking Attack Overview

Due to privacy concerns, many apps store photo images

shot by the camera only in memory and never make them

publicly accessible, for example by writing them to ex-

ternal storage. This applies to many apps such as bank-

ing apps (e.g., Chase), shopping apps (e.g., Amazon and

Best Buy), and search apps (e.g.,Google Goggles). Such

photo images contain highly-sensitive information such

as the user’s life events, shopping interests, home address

and signature (on the check). Surprisingly, we show that

with Activity tracking such sensitive and well-protected

camera photo images can be successfully stolen by a

background attack app. Different from PlaceRaider [34],

our attack targets at the camera photo shot by the user,

instead of random ones of the environment.

Our attack follows a simple idea: when an Activity is

using the camera, the attack app quickly takes a separate

image while the camera is still in the same position. In

the following, we detail our design and implementation.

7.2 Attack Design Details

Background on Android camera resource manage-

ment. With the camera permission, an Android app can

obtain and release the camera by calling open() and

release(). Once the camera is obtained, an app can

then take pictures by calling takePicture(). There

are two important properties: (1) exclusive usage. The

camera can be used by only one app at any point in time;

(2) slow initialization. Camera initialization needs to

work with hardware, so open() typically takes 500–

1000 ms (measured on Samsung Galaxy S3 devices).

Obtain camera images in the background. In the An-

droid documentation, taking pictures in the background

is explicitly disallowed due to privacy concerns [35].

Though PlaceRaider [34] succeeded in doing so, we find

that their technique is restricted to certain devices run-

ning old Android systems which do not follow the docu-

mentation correctly, e.g., Droid 3 with Android 2.3.

Interestingly, we find camera preview frames to be

the perfect alternative interface for obtaining camera

images without explicitly calling takePicture().

When using the camera, the preview on the screen

shows a live video stream from the camera. Using

PreviewCallback(), the video stream frames are

returned one by one, which are actually the camera im-

ages we want. SurfaceTexture is used to capture this

11

Foreground

app

Background

attack app

Camera

App

behavior

App

behavior

Obtain camera imageCamera usage checking

Camera shooting Activity Picture review Activity

...

time

Camera
time

Figure 14: Camera peeking attack process when the

foreground Activity is using the camera

Camera peeking Success DoS # of camera poss-

attack type rate rate ession per round

Blind attack (3s idle time) 81% 19% 30.5

Blind attack (4s idle time) 83% 14% 20.9

Blind attack (5s idle time) 79% 8% 18.9

UI state based attack 99% 0% 1.4

Table 5: User study evaluation result for the camera peeking

attack

image stream, and we find that it can be created with a

nonexistent OpenGL texture object name, thus prevent-

ing any visible preview on the screen. We suspect that

the less restrictive interface is managed by OpenGL li-

brary which bypasses the Android framework and its as-

sociated security checks. Compared to PlaceRaider [34],

this technique not only has no requirement of the sensi-

tive MODIFY AUDIO SETTINGS permission to avoid

shutter sound, but also has much faster “shutter speed” of

24 frames per second. Note that even if this interface is

blocked, our attack can still use techniques in §6 to inject
an Activity to the foreground to get the preview frames.

Obtain photo images shot by the user. Fig. 14 shows

how our attack gets the photo image the user shoots in

the victim app. The photo taking functionality usually

involves a camera shooting Activity and a picture review

Activity. Once the user clicks on the shutter button in the

former, the latter pops up with the picture just taken. Due

to the exclusive usage property, when the foregroundAc-

tivity is using the camera the attack app cannot get the

camera. Thus, once knowing that the camera is in use,

the attack app keeps calling open() to request the cam-

era until it succeeds right after the user presses the shutter

button and the camera gets released during the Activity

transition. Since the delay to get a camera preview frame

is only the initialization time (500–1000 ms), the cam-

era is very likely still pointing at the same object, thus

obtaining a similar image.

Capture the camera usage time. To trigger the attack

process in Fig. 14, the attack app needs to know when

the camera is in use in the foreground. However, due

to the slow initialization, a naive solution which peri-

odically calls open() to check the camera usage will

possess the camera for 500–1000 ms for each checking

action when the camera is not in use. During that time,

if the foreground app tries to use the camera, a denial of

service (DoS) will take place. With 12 popular apps, we

find that when failing to get the camera, most apps pop

up a “camera error” or ”camera is used by another app”

message and some even crash immediately. These errors

may indicate that an attack is ongoing and alert the user.

Besides, the frequent camera resource possessing behav-

ior is easily found suspicious with increasing concerns

about smartphone camera usage [34].

To solve the problem, our attack uses Activity infer-

ence to capture the camera usage time by directly waiting

for the camera shooting Activity. To increase the infer-

ence accuracy for Activities using the camera, we add

camera usage as a binary feature (true or false on the

camera usage status) and it is only tested when the land-

ing Activity is very likely to be the camera shooting Ac-

tivity based on other features to prevent DoS and overly

frequent camera possessions.

7.3 Attack Evaluation

Implementation. We implement the camera peeking at-

tack against the check deposit functionality in Chase app,

which allows users to deposit personal checks by taking

a picture of the check. Besides the network permission,

the attack app also needs the the camera permission to

access camera preview frames. On the check photo, the

attacker can steal much highly-sensitive personal infor-

mation, including the user name, home address, bank

routing/account number, and even the user’s signature.

A video demo is available at [6].

Evaluation methodology. We compare our UI state

based camera peeking attack against the blind attack,

which periodically calls open() to check the fore-

ground camera usage as described in §7.2. We add pa-

rameter idle time for the blind attack as the camera usage

checking period. The longer the idle time is, the lower

the DoS possibility and the camera possession frequency

are. However, the idle time cannot be so long that the at-

tack misses the camera shooting events. Thus, the blind

attack faces a trade-off between the DoS risk, the camera

possession frequency, and the attack success rate.

User study. We evaluate our attack with a user study of

10 volunteers. In the study we use 4 Samsung Galaxy S3

phones with Android 4.1. Three of them use the blind

attacks with idle time being 3, 4 and 5 seconds respec-

tively, and the last one uses the UI state based attack.

Each user performs 10 rounds, and in each round, the

users are asked to first interact with the app as usual, and

then go to the check deposit Activity and take a picture

of a check provided by us. We emphasize that they are

expected to perform as if it is their own check. The IRB

for this study has been approved and we took steps to

ensure that no sensitive user data were exposed, e.g., by

using a fake bank account and personal checks.

Performance metrics. For evaluation we measure: (1)

12

DoS rate, the ratio that when the user wants to use the

camera but fails; (2) number of camera possessions, the

number of events that the camera is possessed by the at-

tack app; (3) success rate, the ratio that the attacker gets

the check image after the user shoots the check.

Result. Table 5 shows the user study evaluation results.

With the camera usage feature, the UI state based attack

can achieve 99% success rate, and the only failure case

is due to a failure in detecting the Activity transition. For

the blind attack, the success rate is less than 83%, and

when the idle time increases, the success rate increases

then decreases. The increase is due to lower DoS proba-

bility, and the decrease is because the users usually finish

shooting in around 4 seconds (found in our user study),

so when the idle time increases to 5 seconds, the blind

attack misses some camera shooting events.

UI state based attack causes no DoS during the user

study. For the blind attack, the DoS rate is around 8–

19%, and decreases when the idle time increases. Con-

sidering that a single DoS case may likely cause “sud-

den death” for the attack app, this risk is high, especially

compared to the UI state based attack.

The camera possession number for the UI state based

attack is also a magnitude lower. Every round, except the

necessary one for camera shooting, the UI state based at-

tack only needs 0.4 excessive camera possessions, which

is mainly caused by inaccurate inference. For the blind

attack, to ensure a high success rate, the camera posses-

sion number is proportional to time, making it hard to

avoid suspicious frequent camera possessions.

Fig. 15 includes an average quality check image

“stolen” from a real user, showing that the image is clear

enough to read all the private information.

Figure 15: An example check image “stolen” using the

camera peeking attack.

8 Other Attack Scenarios

Enhance existing attacks. Generally, a class of existing

attacks that are launched only at specific timings bene-

fits from UI state information. Since many attacks need

to be launched at a specific timing, with the UI state

information, both stealthiness and effectiveness can be

achieved. For example, for the phishing attack using

TCP connection hijacking [9,10], the attack app can pre-

cisely target at connections established in Activities with

web pages instead of unrelated ones, e.g., database up-

dating, keepalivemessages, etc. The attack thus becomes

more efficient and less suspicious by avoiding frequently

sending large amounts of attack traffic [9]. Similar en-

hancement can also be applied to keystroke inference at-

tacks [7, 8] and screenshot taking attack [5] where only

keystrokes entered in login Activities may be of interest.

User behavior monitoring and analysis. UI states

themselves are user behavior related internal states of an

app. As shown in Fig. 2, due to the limited screen size on

the smartphone, full-screen window-level UI state infor-

mation breaks user-app interaction to very fine-grained

states. Thus, by tracking UI states, a background app can

monitor and analyze user behavior, e.g., in a health app

the user is more often looking for drugs or physicians.

In addition, with Activity tracking, the attacker can

even infer which choice is made inside an Activity (e.g.,

which medical condition a user is interested in). This is

achieved using the size of the request packet obtained by

the technique described in §4.1. For example, for QAL-

istActivity of H&R Block app, we can infer which tax

question a user is interested in based on the length of the

question that is embedded in the query packet. In this

question list, we find that 10 out of 11 question queries

are distinguishable (with different lengths).

A similar technique was proposed recently [12], but

built upon a network event based state machine, with two

limitations: (1) packet size itself can be highly variable

(ads connections may co-occur) and different Activities

may generate similar packet size traces, e.g., login Activ-

ities and user account Activities both have the authentica-

tion connection thus may have similar packet size trace.

UI state knowledge would limit the space of possible

connections significantly as we infer the Activity based

on a more comprehensive set of features; (2) not all user

choices in Android are reflected in network packets —

database/Content Provider can also be used to fetch con-

tent. With our UI state machine, we can further extend

the attack to the Content Provider based user choice in-

ference. For example, in WebMD, DrugSearchMainAc-

tivity has a list of letter A to Z. Once one letter is clicked,

Content Provider is queried to fetch a list of drug names

starting from that letter. With the Content Provider query

event and content size inference technique (described in

§4.1), we characterized all of the choices and found fairly
good entropy: the responding content sizes have 16 dif-

ferent values for the 26 letters, corresponding to 4 bits

out of 4.7 bits of information for the user choice.

9 Defense Discussion

In this section, we suggest more secure system designs

to defend against the attacks found in this paper.

13

Proc file system access control. In our attack,

shared vm and features of Activity signature such as

CPU and network all rely on freely accessible files in

proc file system. However, as pointed out by Zhou et

al. [12], simply removing them from the list of pub-

lic resources may not be a good option due to the large

amount of existing apps depending on them. To better

solve the problem, Zhou et al. [12] proposed a mitiga-

tion strategy which reduces the attack effectiveness by

rounding up or down the actual value. This can work for

the network side channel, but may not be effective for

shared vm and shared pm, which are already rounded to

pages (4KB) but still generate a high transition detec-

tion accuracy. This is mainly because the window buffer

size is large enough to be distinct and the side channel

is pretty clean, as discussed in §3.3. Thus, Android sys-

tem may need to reconsider its access control strategy for

these public accessible files to better balance functional-

ity and security. In fact, Android has already restricted

access to certain proc files that are publicly accessible in

the standard Linux, e.g., /proc/pid/smaps. However, our

work indicates that it is still far from being secure.

Window manager design. As described in §3.2, the ex-
istence of the shared-memory side channel is due to the

requirement of the window buffer sharing in the client-

drawn buffer design. Thus, a fundamental way of de-

fending against the UI state inference attack in this paper

is to use the server-drawn buffer design in GUI systems,

though this means that any applications that are exposed

to the details of the client-drawn buffer design need to be

updated, which may introduce other side effects.

Window buffer reuse. The Activity transition signal

consists of shared vm increases and decreases, corre-

sponding to window buffer allocations and deallocations.

To eliminate such signal, the system can avoid them by

pre-allocating two copies of the buffers and reuse them

for all transitions in an app. Note that this is at the cost of

much more memory usage for each app, as each buffer is

several megabytes in size. However, with increasingly

larger memory size in future mobile devices [36], we

think this overhead may be acceptable.

In this paper, the most serious security breaches are

caused by follow-up attacks based on UI state inference.

Thus, we provide suggestions as follows that can miti-

gate the attacks even if the UI state information is leaked.

Enforce UI state transition animation. Animation is an

important indicator for informing users about app state

changes. In the Activity hijacking attack in §6, the seam-

less Activity injection is possible because this indicator

can be turned off in Android. With UI state tracking,

the attacker can leverage this to replace the foreground

UI state with a phishing one without any visible indica-

tions. Thus, one defense on GUI system design side is

to always keep this indicator on by enforcing animation

in all UI state transitions. This helps reduce the attack

stealthiness though it cannot fully eliminate the attack.

Limit background application functionality. In GUI

systems, background applications do not directly interact

with users, so they should not perform privacy-sensitive

actions freely. In §7, a background attacker can still get

camera images, indicating that Android did not suffi-

ciently restrict the background app functionality. With

UI state tracking, an attacker can leverage precise timing

to circumvent app data isolation. Thus, more restrictions

should be imposed to limit background applications’ ac-

cess to sensitive resources like camera, GPS, sensor, etc.

To summarize, we propose solutions that eliminate de-

pendencies of the attack such as the proc file side chan-

nel, which may prevent the attack. However, more inves-

tigation is required to understand their effectiveness and

most of them do require significant changes that have im-

pact on either backward-compatibility or functionality.

10 Related Work

Android malware. The Android OS, like any systems,

contains security vulnerabilities and is vulnerable to mal-

ware [37–39]. For instance, the IPC mechanisms leave

Android vulnerable to confused deputy attacks [38, 39].

Malware can collect privacy-sensitive information by re-

questing certain permissions [37, 40]. To combat these

flaws, a number of defenses have been proposed [38,41],

such as tracking the origin of inter-process calls to pre-

vent unauthorized apps from indirectly accessing priv-

ileged information. Our attack requires neither spe-

cific vulnerabilities nor privacy-sensitive permissions, so

known defense mechanisms will not protect against it.

Side-channel attacks. Much work has been done on

studying side channels. Proc file systems have been

long abused for side-channel attacks. Zhang et al. [24]

found that the ESP/EIP value can be used to infer

keystrokes. Qian et al. [10] used “sequence-number-

dependent” packet counter side channels to infer TCP

sequence number. In memento [11], the memory foot-

prints were found to correlate with the web pages a user

visits. Zhou et al. [12] found three Android/Linux public

resources to leak private information. These attacks are

mostly app-dependent, while in this paper the UI state

inference applies generally to all Android apps, leading

to not only a larger attack coverage but also many more

serious attacks. Timing is another popular form of side

channels. Studies have shown that timing can be used

to infer keystrokes as well as user information revealed

by web applications [23, 42–44]. Sensors are more re-

cent, popular side-channel sources. The sound made by

the keyboard [45], electromagnetic waves [46], and spe-

cial software [47] can be used to infer keystrokes. More

recently, a large number of sensor-based side channels

have been discovered on Android, including the micro-

14

phone [18], accelerometer [7, 8] and camera [34]. Our

attack does not rely on sensors which may require suspi-

cious permissions. Instead, we leverage only data from

the proc file system, which is readily available with no

permission requirement.

Root causes of side-channel attacks. All side-channel

attacks exist because of certain behavior in the soft-

ware/hardware stack that can be distinguished through

some forms of observable channels by attackers. For ex-

ample, the inter-keystroke timing attack exploits the ap-

plication and OS behavior that handles user input. SSH

programswill send whatever keys the user types immedi-

ately to the network, so the timing is observable through

a network packet trace [23]. For VIM-like programs, cer-

tain program routines are triggered whenever a new key

is captured, so the timing can be captured through snap-

shots of the program’s ESP/EIP values [24]. The TCP

sequence number inference attack [10] exploits the TCP

stack of the OS that exposes internal states through ob-

servable packet counters. In our attack, we exploit a new

side channel caused by popular GUI framework behav-

ior, in particular how user interaction and window events

are designed and implemented.

11 Conclusion

In this paper, we formulate the UI state inference attack

designed at exposing the running UI state of an appli-

cation. This attack is enabled by a newly-discovered

shared-memory side channel, which exists in nearly all

popular GUI systems. We design and implement the An-

droid version of this attack, and show that it has a high

inference accuracy by evaluating it on popular apps. We

then show that UI state tracking can be used as a power-

ful attack building block to enable new Android attacks,

including Activity hijacking and camera peeking. We

also discuss ways of eliminating the side channel, and

suggest more secure system designs.

Acknowledgments

We would like to thank Sanae Rosen, Denis Foo Kune,

Zhengqin Luo, Yu Stephanie Sun, Earlence Fernandes,

Mark S. Gordon, the anonymous reviewers, and our

shepherd, Jaeyeon Jung, for providing valuable feed-

back on our work. This research was supported in part

by the National Science Foundation under grants CNS-

1318306, CNS-1059372, CNS-1039657, CNS-1345226,

and CNS-0964545, as well as by the ONR grant N00014-

14-1-0440.

References

[1] N. Feske and C. Helmuth, “A Nitpickers guide to a

minimal-complexity secure GUI,” in ACSAC, 2005.

[2] J. S. Shapiro, J. Vanderburgh, E. Northup, and

D. Chizmadia, “Design of the EROS trusted win-

dow system,” in USENIX Security Symposium,

2004.

[3] T. Fischer, A.-R. Sadeghi, andM.Winandy, “A pat-

tern for secure graphical user interface systems,” in

20th International Workshop on Database and Ex-

pert Systems Application. IEEE, 2009.

[4] S. Chen, J. Meseguer, R. Sasse, H. J. Wang, and

Y.-M. Wang, “A Systematic Approach to Uncover

Security Flaws in GUI Logic,” in IEEE Symposium

on Security and Privacy, 2007.

[5] C.-C. Lin, H. Li, X. Zhou, and X. Wang, “Screen-

milker: How to Milk Your Android Screen for Se-

crets,” in NDSS, 2014.

[6] “Video Demos for this Paper,” https://sites.google.

com/site/uistateinferenceattack/demos.

[7] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring

user inputs on smartphone touchscreens using on-

board motion sensors,” inWiSec, 2012.

[8] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and

R. R. Choudhury, “Tapprints: your finger taps have

fingerprints,” in Mobisys, 2012.

[9] Z. Qian and Z. M. Mao, “Off-Path TCP Sequence

Number Inference Attack – How Firewall Middle-

boxes Reduce Security,” in IEEE Symposium on Se-

curity and Privacy, 2012.

[10] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative tcp

sequence number inference attack: how to crack se-

quence number under a second,” in CCS, 2012.

[11] S. Jana and V. Shmatikov, “Memento: Learning Se-

crets from Process Footprints,” in IEEE Symposium

on Security and Privacy, 2012.

[12] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan,

X. Wang, C. A. Gunter, and K. Nahrstedt, “Iden-

tity, Location, Disease and More: Inferring Your

Secrets from Android Public Resources,” in CCS,

2013.

[13] “Wayland,” http://wayland.freedesktop.org/.

[14] “Ubuntu Move to Wayland,” http://www.

markshuttleworth.com/archives/551.

[15] “Mir,” https://wiki.ubuntu.com/Mir.

[16] “Back Stack,” http://developer.android.com/guide/

components/tasks-and-back-stack.html.

15

https://sites.google.com/site/uistateinferenceattack/demos
https://sites.google.com/site/uistateinferenceattack/demos
http://wayland.freedesktop.org/
http://www.markshuttleworth.com/archives/551
http://www.markshuttleworth.com/archives/551
https://wiki.ubuntu.com/Mir
http://developer.android.com/guide/components/tasks-and-back-stack.html
http://developer.android.com/guide/components/tasks-and-back-stack.html

[17] T. Azim and I. Neamtiu, “Targeted and depth-first

exploration for systematic testing of android apps,”

in OOPSLA, 2013.

[18] R. Schlegel, K. Zhang, X. yong Zhou, M. Int-

wala, A. Kapadia, and X. Wang, “Soundcomber:

A Stealthy and Context-Aware Sound Trojan for

Smartphones,” in NDSS, 2011.

[19] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wag-

ner, “Android Permissions Demystified,” in CCS,

2011.

[20] “VMMap,” http://technet.microsoft.com/en-us/

sysinternals/dd535533.aspx.

[21] “project-butter,” http://www.androidpolice.com/

2012/07/12/getting-to-know-android-4-1-part-3-

project-butter-how-it-works-and-what-it-added/.

[22] “Android DDMS,” http://developer.android.com/

tools/debugging/ddms.html.

[23] D. X. Song, D.Wagner, and X. Tian, “Timing Anal-

ysis of Keystrokes and Timing Attacks on SSH,” in

USENIX Security Symposium, 2001.

[24] K. Zhang and X. Wang, “Peeping Tom in

the Neighborhood: Keystroke Eavesdropping on

Multi-User Systems,” in USENIX Security Sympo-

sium, 2009.

[25] “Whois IP Address Database,” http://whois.net/.

[26] L. R. Rabiner, “A tutorial on hidden Markov mod-

els and selected applications in speech recogni-

tion,” Proceedings of the IEEE, vol. 77, no. 2, pp.

257–286, 1989.

[27] “Android Activity Testing,” http://developer.

android.com/tools/testing/activity testing.html.

[28] “Monsoon Power Monitor,” http://www.msoon.

com/LabEquipment/PowerMonitor/.

[29] “Focus Stealing Vulnerability,” http://blog.

spiderlabs.com/2011/08/twsl2011-008-focus-

stealing-vulnerability-in-android.html.

[30] “Android Launching Mode,” http://

developer.android.com/guide/topics/manifest/

activity-element.html#lmode.

[31] “Android Broadcast Receiver,” http://developer.

android.com/reference/android/content/

BroadcastReceiver.html.

[32] “Android Apktool,” http://code.google.com/p/

android-apktool/.

[33] “Transparent Activity Theme,” http://developer.

android.com/guide/topics/ui/themes.html#

ApplyATheme.

[34] R. Templeman, Z. Rahman, D. Crandall, and

A. Kapadia, “PlaceRaider: Virtual Theft in Phys-

ical Spaces with Smartphones,” in NDSS, 2013.

[35] “Android Camera,” http://developer.android.com/

reference/android/hardware/Camera.html.

[36] “Samsung Wants to Cram 4GB of RAM into Your

Next Phone,” http://www.pcworld.com/article/

2083320/samsung-lays-groundwork-for-

smartphones-with-more-ram.html.

[37] Y. Zhou and X. Jiang, “Dissecting Android mal-

ware: Characterization and evolution,” in IEEE

Symposium on Security and Privacy, 2012.

[38] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and

E. Chin, “Permission Re-delegation: Attacks and

Defenses,” in USENIX Security Symposium, 2011.

[39] Y. Zhou and X. Jiang, “Detecting Passive Content

Leaks and Pollution in Android Applications,” in

NDSS, 2013.

[40] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. Sheth, “TaintDroid: An Infor-

mation Flow Tracking System for Real-Time Pri-

vacy Monitoring on Smartphones,” in OSDI, 2010.

[41] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and

D. S. Wallach, “Quire: Lightweight Provenance for

Smart Phone Operating Systems,” in USENIX Se-

curity Symposium, 2011.

[42] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-

channel Leaks in Web Applications: A Reality To-

day, a Challenge Tomorrow,” in IEEE Symposium

on Security and Privacy, 2010.

[43] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,

“Cross-VM side channels and their use to extract

private keys,” in CCS, 2012.

[44] A. Bortz and D. Boneh, “Exposing private informa-

tion by timing web applications,” inWWW, 2007.

[45] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard

acoustic emanations revisited,” in CCS, 2005.

[46] M. Vuagnoux and S. Pasini, “Compromising elec-

tromagnetic emanations of wired and wireless key-

boards,” in USENIX security symposium, 2009.

[47] K. Killourhy and R. Maxion, “Comparing

Anomaly-Detection Algorithms for Keystroke

Dynamic,” in DSN, 2009.

16

http://technet.microsoft.com/en-us/sysinternals/dd535533.aspx
http://technet.microsoft.com/en-us/sysinternals/dd535533.aspx
http://www.androidpolice.com/2012/07/12/getting-to-know-android-4-1-part-3-project-butter
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/debugging/ddms.html
http://whois.net/
http://developer.android.com/tools/testing/activity_testing.html
http://developer.android.com/tools/testing/activity_testing.html
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://blog.spiderlabs.com/2011/08/twsl2011-008-focus-stealing-vulnerability-in-android.html
http://developer.android.com/guide/topics/manifest/activity-element.html#lmode
http://developer.android.com/guide/topics/manifest/activity-element.html#lmode
http://developer.android.com/guide/topics/manifest/activity-element.html#lmode
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/
http://developer.android.com/guide/topics/ui/themes.html#ApplyATheme
http://developer.android.com/guide/topics/ui/themes.html#ApplyATheme
http://developer.android.com/guide/topics/ui/themes.html#ApplyATheme
http://developer.android.com/reference/android/hardware/Camera.html
http://developer.android.com/reference/android/hardware/Camera.html
http://www.pcworld.com/article/2083320/samsung-lays-groundwork-for-smartphones-with-more-ram.html

	Introduction
	Background and Overview
	Background: Window Manager
	Background: Android Activity and Activity Transition
	Attack Overview

	Shared-Memory Side Channel and Activity Transition Detection
	Shared-Memory Side Channels
	Android Window Events and Shared-Memory Side Channel
	Activity Transition Detection

	Activity Inference
	Activity Signature Design
	Transition Model and Inference Result
	Automated Activity Transition Tool

	Evaluation
	Activity Transition Tool Evaluation
	Activity Inference Attack Evaluation
	Activity Transition Detection Results
	Activity Inference Results
	Breakdown Analysis and Discussion
	Attack overhead

	Enabled Attack: Activity Hijacking
	Activity Hijacking Attack Overview
	Attack Design Details
	Attack Implementation and Evaluation

	Enabled Attack: Camera Peeking
	Camera Peeking Attack Overview
	Attack Design Details
	Attack Evaluation

	Other Attack Scenarios
	Defense Discussion
	Related Work
	Conclusion

