arXiv:1806.05179v2 [cs.CR] 16 Jun 2018

SafeSpec: Banishing the Spectre of a Meltdown with Leakage-Free Speculation

Khaled N. Khasawneh
Department of Computer Science
and Engineering
University of California, Riverside
Email: kkhas001 @ucr.edu

Dmitry Evtyushkin
Department of Computer Science
College of William and Mary
Email: devtyushkin@wm.edu

Abstract—Speculative execution, which is used pervasively in
modern CPUs, can leave side effects in the processor caches and
other structures even when the speculated instructions do not
commit and their direct effect is not visible. The recent Meltdown
and Spectre attacks have shown that this behavior can be
exploited to expose privileged information accessed speculatively
to an unprivileged attacker. In particular, the attack forces
the speculative execution of a code gadget that will carry out
the illegal read, which eventually gets squashed, but which
leaves a side-channel trail that can be used by the attacker to
infer the value. Several attack variations are possible, allowing
arbitrary exposure of the full kernel memory to an unprivileged
attacker. In this paper, we introduce a new model (SafeSpec)
for supporting speculation in a way that is immune to the side-
channel leakage necessary for attacks such as Meltdown and
Spectre. In particular, SafeSpec stores side effects of speculation
in separate structures while the instructions are speculative. The
speculative state is then either committed to the main CPU
structures if the branch commits, or squashed if it does not,
making all direct side effects of speculative code invisible. The
solution must also address the possibility of a covert channel
from speculative instructions to committed instructions before
these instructions are committed (i.e., while they share the
speculative state). We show that SafeSpec prevents all three
variants of Spectre and Meltdown, as well as new variants that we
introduce. We also develop a cycle accurate model of modified
design of an x86-64 processor and show that the performance
impact is negligible (in fact a small performance improvement
is achieved). We build prototypes of the hardware support in
a hardware description language to show that the additional
overhead is acceptable. SafeSpec completely closes this class of
attacks, retaining the benefits of speculation, and is practical to
implement.

I. INTRODUCTION

Speculative execution is a standard microarchitectural tech-
nique used in virtually all modern CPUs to improve per-
formance. Recently, it has been shown that speculatively
executed instructions can leave measurable side-effects in
the processor caches and other shared structures even when
the speculated instructions do not commit and their direct
effect is not visible. The recent Meltdown and Spectre attacks
[1]1, [2], [3], [4] (we call this class of attacks speculation

Esmaeil Mohammadian Koruyeh
Department of Computer Science
and Engineering
University of California, Riverside
Email: emoha004 @ucr.edu

Dmitry Ponomarev
Department of Computer Science
Binghamton University
Email: dima@cs.binghamton.edu

Chengyu Song
Department of Computer Science
and Engineering
University of California, Riverside
Email: csong@cs.ucr.edu

Nael Abu-Ghazaleh
Department of Computer Science
and Engineering
University of California, Riverside
Email: naelag@ucr.edu

attacks) have shown that this behavior can be exploited to
expose information that is otherwise inaccessible. In a typical
scenario, attackers either mis-train the branch predictor unit
or directly pollute it [5] to force the speculative execution of
code that reads privileged data (these checks are not enforced
during speculation). Although the speculative instructions will
eventually get squashed, leaving no direct data accessible to the
attacker, they leave a side-channel trail that can be used to infer
the value. Several attack variations have been demonstrated,
including arbitrary exposure of the full memory of other
processes, OS kernel, hypervisor, and even SGX enclaves [6]
to an unprivileged attacker, making this a dangerous open
attack vector on modern systems. We describe these attacks
and present our threat model in Section II.

Although a number of defenses and software patches have
been proposed to mitigate Spectre and Meltdown [7], [8],
they often address only one aspect of the attack, leaving
attackers with other possible variations that are still available.
In addition, these patches often lead to high overheads: 10-
30% reported on average, but often much higher. For example,
Netflix reported 800% slowdown with the Meltdown patches
on their systems [9], [10]. Most of the solutions target a subset
of the threat models and make assumptions that can be broken
by future architectures

In this paper, we explore whether speculation can be made
leakage free in a principled way, enabling CPUs to retain the
performance advantages of speculation while removing the
security vulnerabilities that speculation exposes. To this end,
we introduce SafeSpec, a design principle where speculative
state is stored in temporary structures that are not accessible
by committed instructions. As instructions transition from
being speculative to commitable, any speculative state is
moved to the permanent structures. On the other hand, if
a speculative branch is squashed, the speculative side effects
are canceled in place leaving no measurable side effects in the
permanent structures and closing the vulnerability exploited
by speculation attacks. We consider two variants that differ
in when an instruction is considered safe to commit. In the

wait-for-commit (WFC) variation, an instruction is considered
speculative until it is committed. In the wait-for-branch (WFB)
variation, we consider an instruction to be commitable when
the last control flow instruction it depends on commits. Note
that only WFC prevents Meltdown-style attacks which do not
depend on a branch misspeculation, but it is possible that
other defenses can cover Meltdown since only Intel processors
appear to be vulnerable to it. SafeSpec makes no assumptions
on the branch predictor behavior or on speculative execution
behavior; for example, it does not prevent the attackers from
mis-training or even polluting the branch predictor, nor does
it prevent them from speculatively reading privileged data.
Rather, SafeSpec interferes with the attacker’s ability to create a
covert channel using speculative data accesses to communicate
illegally-accessed data out. We describe SafeSpec in Section III.

We demonstrate the SafeSpec principle by building a memory
hierarchy (caches and TLBs) that are free from speculation-
induced leakage. Making the memory hierarchy speculation-
leakage free prevents Meltdown and Spectre attacks. In
particular, we expand the load-store queues to store a pointer
to a temporary associative structure that holds speculatively
loaded cache lines. We also introduce a similar structure to hold
speculatively loaded TLB entries. We describe the design and
some of the complexity-performance trade-offs in Section IV.

Although the SafeSpec design presented so far completely
prevents direct leakage of speculative side-effects, we identify
a transient type of leakage that occurs in the introduced
speculative state. Specifically, since many instructions start
out as speculative before they commit, there is a period of time
that eventually committed instructions share the shadow state
with eventually squashed instructions. We show that a covert
channel can be created in this transient period. We call this
type of attacks, which is a byproduct of SafeSpec, transient
speculation attacks (TSAs). We explore how to construct the
shadow state to mitigate TSAs in Section V. The resulting
design prevents all possible speculative leakage in the CPU
caches and TLBs.

Section VI presents a performance, complexity and security
analysis of SafeSpec. We show that both WFC and WFB
models result in negligible impact on performance (in fact,
modest improvements for some benchmarks). Although we
miss out on some prefetching benefits of misspeculation [11],
we benefit from the extra structures that hold speculative data,
effectively increasing the size of the cache and the TLBs, and
the reduction of pollution of the primary structures. We also
analyze the complexity of SafeSpec including the impact of all
new structures, and demonstrate a reasonable increase in the
area and power consumption. Finally, we show that SafeSpec
stops proof-of-concept implementations of all three variants
of Meltdown and Spectre, as well as the new variants that we
introduced.

Designing speculative architectures that are leakage free in
a principled way requires carefully rethinking most aspects
of the processor microarchitecture. This paper takes a first
step into exploring this problem, and by necessity leaves many
steps to future research. Specifically, we show SafeSpec only

for the memory translation and access components of the
CPU, which closes most currently known attack variations.
To protect the processor and the full system, all speculatively
updated structures, such as the branch predictor and the DRAM
buffers must be protected [5], [12], [13]. Having established
the SafeSpec principles, future work should carefully identify
how speculative instructions can affect the state of the system
and apply the same principles to protect them. The default
simulation models in the simulator we used (MarSSx86) do
not use a prefetcher. In the case when a prefetcher is used,
we should include all the lines brought in by the prefetcher
as part of the speculative state. Protecting the prefetcher
completely requires delaying its training so that its influenced
only by memory accesses that end up committing. Another
limitation of our work is that we consider only single-threaded
workloads. Multi-threaded workloads introduce issues of cache
coherence and memory consistency model, which are solvable.
However, they also introduce their own versions of speculative
attacks [14] that must also be handled. Thus, we elected to
focus this paper on the single-threaded model to establish
feasibility and to gain initial experiences. We discuss these and
other limitations of our solution in Section VII.
In summary, the paper makes the following contributions:

« We introduce the SafeSpec model to protect against
speculation attacks by separating speculative state into
Separate structures.

o« We design a leakage-free cache hierarchy using this
principle that mitigates all three known variants of
the attack. We identify a number of performance and
complexity issues and introduce solutions for them.

o We identify a new class of speculative attacks (Transient
Speculation Attacks) that arises in SafeSpec implemen-
tations where the covert exchange of information occurs
completely while the instructions are speculative. We
mitigate this class of attacks by sizing the shadow
structures to prevent contention.

o« We evaluate SafeSpec for caches and TLBs from a
performance and complexity perspective. We show that
the hardware overhead is acceptable and that we are able
to retain the performance benefits of speculation (in fact,
performance is slightly improved due to the additional
cache space in the shadow state).

II. SPECULATION ATTACKS AND THREAT MODEL

In this section, we introduce speculation based side-channel
attacks (speculation attacks for short). The section first dis-
cusses speculative execution to characterize the capabilities of
the attacker, and then overviews the Meltdown and Spectre
attacks.

A. Speculative Execution in Modern Processors

Speculative execution has been an important part of computer
architecture since the 1950s. The IBM Stretch processor
implemented a predict not-taken branch predictor [15]. As
computer architecture continued to advance rapidly, the amount

Mils-speculatlve 2.7
Direction .7

[P W S
1 1
1Secret = Unauthorized Access() !
ITransmit(Secret) '
1

Receive(Secret)

ey

microarchitectural
structure

Fig. 1. Attack 1

of speculation that is exploited has progressively been in-
creasing with aggressive out-of-order execution, supported by
sophisticated branch predictor designs [16], [17], [18] that
are highly successful in predicting both the branch direction
and its target address. In particular, the number of pipeline
stages in production CPUs has continued to grow to the point
where modern pipelines commonly have between 15 and 25
stages. Moreover, with out-of-order execution, when a branch
instruction stalls (e.g., due to a cache miss on which it depends),
instructions that follow the branch are continuously being
issued. Thus, the speculation window can be extremely large,
typically limited by the size of structures such as the reorder
buffer, which can hold a few hundred instructions.

Speculation is designed to not affect the correctness of a
program. Although branch mispredictions occur and speculative
instructions can ignore execution faults (e.g., permission error
for memory access) these semantics were not considered
harmful as mis-speculation will eventually be detected and the
uncommitted instructions will be squashed, leaving no directly
visible modifications to the architectural state such as registers
and memory. Micro-architectural structures such as caches and
TLBs are affected by speculative operations, but the contents
of the cache only affect performance, not the correctness of a
program. In fact, prior work has shown that there are beneficial
prefetching side-effects to speculatively executed instructions
even those that are eventually squashed [19]. To exploit these
effects, designs such as runahead execution [11] intentionally
increase the speculation window beyond the physical limitations
of the reorder buffer to generate additional cache misses
further into the program to exploit their prefetching effect. This
approach was shown to significantly improve single-threaded
performance.

B. Speculation Attacks

Meltdown and Spectre are two representative attacks of the
class of speculation attack. In general, these attacks exploit
three properties of speculative execution in modern processors:

« P1: branch prediction validation and permission checks

are performed deep in the pipeline and execution fault is
generated only if the instruction is committed, enabling

speculative instructions to access data outside its privilege
domain;

o P2: speculative instructions leave side-effects in
micro-architectural structures such as caches, which
can be inferred using well-known techniques like
Flush+Reload [20] and Prime+Probe side-channel at-
tacks [21].

o P3: the branch predictor can be mistrained (Spectre 1),
or directly polluted (Spectre 2). It is shared across all
programs running on the same physical core [2], [3],
[5], allowing code running in one privilege domain to
manipulate branch prediction in another domain (e.g.,
kernel, VM, hypervisor, another process, or SGX enclave).

Next, we overview how different variants of Spectre and

Meltdown attacks work, and distinguish them based on how
they trigger and leverage speculative execution.

unsigned char secret;
dummy = array[secret x 64];
Fig. 2. Secret-revealing gadget.

1) A Common Gadget: Speculation attacks aim to “read”
memory/register content that is otherwise restricted. Unlike
traditional memory reads, speculative reads are based on
triggering speculative execution of a small code chunk, called
gadget. A simplified example of such gadget is demonstrated in
Figure 2. Assume the variable secret holds a secret value and
is used as an index into a byte array. If processor speculatively
executes this code, a memory access will be generated, and as
a result some data will be borough into the data cache. Note
that the secret variable controls what cache set will be updated
by the speculative execution hardware. The multiplication
operation ensures that different values of the variable will result
in different cache sets. Because in many cases the location
of data and code structures in victim process memory is not
secret, the attacker, capable of monitoring CPU cache activity
can link the observed behaviour with the corresponding value
of the secret variable. For example, by knowing cache set sg
is accessed when the value of secret is 0, the attacker can
deduce that the value of secret must be 1(modn), with n
equals to the number of sets in the cache, when an access to
the cache set s; is detected. Cache updates can be detected
by attacker using a range of cache side channel attacks [20],
[21], [22]. Please note that in normal execution, this code will
never be executed, otherwise it will result in trivial cache side
channel leakage. In speculative attacks the attacker uses the
properties P1 and P3 described above to trigger the gadget to
be speculatively executed by the victim.

if (offset < arrayl_size)
y = array2larrayl[offset] *» 64];

2) Spectre (Variant 1): This variant of the attack can be
demonstrated by the code presented in Figure II-B1. In this
code, a victim process reads values from arrayl using the
offset provided by the attacker. Then, resulting value is used
to perform an access into array2. As we discussed above,
accesses into the array2 can be used by the attacker to deduce

the value of the index. The index, in its turn, is controlled
by the attacker since attacker controls the of fset. Therefore,
the attacker can use a carefully selected value of offset to
read arbitrary memory address which then will result in cache
access observable by the attacker. However, the if statement
ensures there are no out of bounds memory accesses allowed.
Unfortunately, the attacker can exploit speculative execution
and behavior of branch predictor to force the victim process
to perform an out of bounds memory access in the following
way:

a) The attacker triggers the code to be executed several
times and with the value of the offset such that the
if statement is always true (branch instruction not-
taken). This trains the branch predictor to predict the
corresponding branch always not-taken;

b) Next, the attacker flushes arrayl_size from the cache,
forcing the CPU to fetch the value of arrayl_size from
memory, delaying the correct evaluation of the branch
and creating a large speculative window;

c) Finally, the attacker provides the malicious offset.
The branch predictor unit predicts the branch not-taken,
resulting in two memory accesses that reveal the value
stored at the attacker’s desired address.

3) Spectre (Variant 2): In this variant of the attack, the target
program may not contain the expected gadget or the offset
is not controllable by the attacker. These limitations can be
bypassed by hijacking the speculative execution. Specifically,
when the CPU encounters an indirect branch instruction, the
branch predictor tries to guess the target address and the
CPU immediately starts speculatively executing instructions at
this address. Due to P3, the attacker can perform the branch
target poisoning to hijack the speculative execution flow and to
redirect it to any code location containing gadget instructions.
This resembles the return-oriented programming attack [23].
In summary, the variant 2 attack works as follows:

a) The attacker ensures that the attacking code and the
victim code share the same branch target buffer (BTB)
by executing attacker’s process on the same physical core
with victim.

b) The attacker forces a BTB collision by matching virtual
address of the victim and attacker branch instructions [5].

¢) The attacker performs target poisoning by executing its
own branch.

d) Finally, the attacker triggers the indirect branch to be spec-
ulatively executed, redirecting the speculative execution
to a gadgets of attacker’s choice. The gadget will leak
data through a side channel in a way similar to previously
described.

4) Meltdown: Meltdown attack exploits P1: due to pipelin-
ing and instruction reordering a permission check can happen
after the corresponding memory accesses is speculatively
executed. For example, assume a user application that tries to
read kernel memory. Although such request will be eventually
denied, the speculatively executed instructions will result in
loading of requested data into caches. Using a side channel,

the attacker can effectively read arbitrary kernel (or hypervisor)
memory. This is a very powerful attack, since typically kernel
memory contains a direct mapped region allowing the attacker
to dump the entire physical memory on a given system. Since
the exception eventually will be raised, this attack requires
the ability to tolerate and recover from segmentation faults.
Alternatively, if the attacker can arbitrarily control the exploit
code, she can also avoid the exception by putting the gadget
behind a mispredicted branch, i.e., combining Spectre V1 with
Meltdown to read memory across privilege domains in the
same virtual address space.

C. Threat Model

Since P2 is essential in all speculation attacks, this work
aims to eliminate the side-effects from speculative execution.
Hence, we assume a strong adversary for the branch predictor
and no software-based defense for branches (e.g., 1fence
and retpoline [7]). In particular, we assume that attackers can
arbitrarily control the state of the branch predictor, as if its state
is programmable without any privilege. We assume attackers
can launch a speculation attack either from the same process
or another process. We assume attackers have complete control
over the attacking code (as in the Meltdown attack) and know
the complete layout of the victim domain (another process,
kernel, enclave, etc.). Their goal is to reveal memory and/or
register content of the victim domain. We assume the victim
domain does not have any direct channel or vulnerability to leak
the content so attackers must utilize side-channels. To enable
these side-channel, we assume the victim domain contains the
code gadget such as the one in Figure 2 that can be invoked
by attackers.

The technical solution we propose is general and applicable
to different micro-architectural structures. However, as a
demonstration, our prototype implementation only protects
caches and TLBs to explore concretely the implications and
complications that result from SafeSpec. Therefore, we further
assume that other covert channels, including the ones through
the branch predictor, memory bus and DRAM buffers are out-
of-scope for the current paper, but will be addressed using
similar principles by future work. Similarly, we only consider
a system with a single core. Thus, speculation attacks against
the cache coherence and memory consistency model states [24]
are also left for future work. We discuss the implications on
both of these in Section VIIL

III. SAFESPEC: LEAKAGE-FREE SPECULATION

This paper proposes a principled way to secure processors
against speculation attacks while retaining the ability to carry
out speculative execution to benefit from its performance. The
general principle (shown in Figure 3) uses temporary structures
(shadow state on the figure) to hold any state that is produced
speculatively without affecting the primary structures of the
processor (which we call committed state on the figure). For
example, if a speculative load instruction causes a load of a
cache line, instead of loading that cache line into the processor
caches, we hold the line in a temporary structure. If the load

Committed
State

Shadow
State

update /
Yes
stage N @

CPU Pipeline No

—>

1. Update committed
state

2. Annul update to the
shadow state

stage 1

Annul update to the
shadow state

Fig. 3. SafeSpec overview

instruction is later squashed, these effects are removed in place
(bottom path from the commit state), leaving no changes to
the cache from the mis-speculated instructions, and closing
the vulnerability. Alternatively, if the instruction commits, the
cache line is moved from the temporary structure to the L1
cache and removed from the shadow state.

While SafeSpec is simple in principle, a number of questions
relating to its security, complexity and performance have to be
resolved. We overview these issues in the remainder of this
section.

When to move state from speculative to committed.
There are two options available to decide when to move state
from the shadow to the committed state. In the first variation,
which we call wait-for-branch (WFB), we can assume an
instruction to be no longer speculative when all the branches
(more generally, all predictions) it is dependent on have been
resolved. WFB stops both variants of spectre which depend on
mistraining the branch predictor; none of the mis-speculated
instructions moves to the committed state. However, it does
not prevent Meltdown which does not rely on the branch
predictor.The second variation wait-for-commit (WFC) waits
until the instruction causing a speculative side effect commits
before moving its effects to the committed state, and therefore
also prevents Meltdown. We note that the Reorder buffer
according to this definition is a form of shadow state, whose
data is moved to the permanent state (architectural state) only
when the instruction is committed.

Shadow state organization and size: If the shadow state
structures are too small, then either speculative state is replaced
(causing a loss of an update to the committed state if this data
were to be committed later), or the instruction has to stall until
there is room in the speculative structure before it issues. Thus,
from a performance perspective, the organization and size of the
shadow structure should be designed such that the structures can
hold the speculative state generated by speculation as measured
across typical workloads. However, we will show that security
considerations introduce more stringent requirements on the
speculative state.

Mitigating Transient Speculation Attacks: SafeSpec by
construction prevents speculative values from affecting the
state of committed structures, which is the pathway used to

communicate data covertly in the published speculation attacks.
However, it does not create isolation between instructions that
are in the speculative state. This creates a possibility for a
new variant of attacks which we call transient speculation
attacks (TSAs). In particular, since instructions that commit
can be in the speculative state (before their dependent branch
commits in WFB, or before the instruction itself commits in
WEC), there is a window of time where they can share the
speculative state with misspeculated instructions before they
are squashed. If we are not careful, it is possible to create
a covert channel in this period to communicate the sensitive
data from the mis-speculated branch to the branch that will be
committed, allowing the data to be exfiltrated.

Consider the example of a shadow structure that is sized to
be small (lets say one entry). The malicious speculative code
that reads the privileged data can then communicate it covertly
to speculative code (the “receiver” code that will commit) using
the shadow state. For example, it can replace the entry in the
shadow state, causing the receiver to notice the absence of
its speculative state (since it was replaced) after it commits.
Alternatively, if we block when the shadow structure is full, the
receiver can detect that its code took a longer time to execute.

Although TSAs are strictly less powerful than the original
attack, they must be carefully considered to ensure that leakage
is not possible. One way to solve this problem is to either
partition the speculative state per branch, or to size it generously,
or even for the worst case scenario, to ensure that no leakage
occurs through the shadow state. TSAs can also attempt to
communicate covertly by creating contention on functional
units or other shared structures; this is an issue that we also
consider. We discuss how to mitigate TSA attacks in Section V.

Filtering Delayed Side Effects: One of the issues with
SafeSpec occurs when an instruction is squashed in the middle
of its execution. If the instruction has already initiated a high
latency operation such as a read from memory, we have to
ensure that the response from memory can be discarded after it
was received. The instructions executing speculatively store any
resulting state to the shadow structures. Thus, if a long latency
reply is received and there is no matching transaction, we
simply discard these values. However, it may also be desirable
to filter these transactions lower in the system, such that the
committed transactions commit directly, and the squashed ones
are cancelled in place. To control the size of this filter, we can
include a branch id with the transactions and track operations
at the branch granularity. The filter can also be used to mark
committed branches so that memory responses corresponding
to them are committed directly to the permanent structures.

IV. SAFESPEC FOR CACHES AND TLBs

To demonstrate the SafeSpec principle, we implemented it to
protect CPU caches and TLBs from leakage during speculative
execution. We chose the CPU caches because they are easily
exploitable targets for covert communication and the ones used
in the Spectre/Meltdown attacks. Caches have simple indexing
and with the availability of instructions such as clflush
on x86, an attacker is able to evict data which facilitates

iTLB i-cache Shadow
i-cache
Shadow iTLB
Branch
Predictor FETCH
[T TIITITT et
Buffer
DECODE

Instructions Decode Queue

Floating
Integers Points 1

aneanflif=sLes

mafles
e LT |
(ROB)

Memory

Shadow dTLB
decache d-cache
COMMIT Shadow dTLB
sore [T !

Queue

Fig. 4. Safespec Extension to the CPU Pipeline

quick exfiltration using, for example, a flush+reload covert
channels [20].

A. Shadow Structures

To protect from speculative covert channels that occur during
memory accesses, and following the SafeSpec principles, we
need to add shadow state to protect the following structures
(Figure 4).

« Data caches: this is the covert channel used in all three
Meltdown/Spectre variants. We add a shadow structure to
hold the cache lines that have been fetched speculatively.
The structure is filled associatively, but accessed as a
lookup-table. In the Load/Store queue, we point specula-
tive loads that have received their data to a corresponding
entry in this table. Speculative instructions in the same
execution branch as the load that fetched a shadow cache
line that access this cache line can use the value from the
shadow structure. If an instruction commits (depending on
WEB or WFC), the cache line is moved from the shadow
structure to the caches. If the instruction is squashed, the
shadow structure entry is marked as available. Note that
this way, not even the cache replacement algorithm state
is affected by the speculative data that does not commit.

« Instruction cache: we built a variant of Meltdown/spectre
using the instruction cache. This variant, conceptually
shown in Figure 5 replaces the data dependent array access
with dependent branches (in function gadgetFunc) to a
location in an array to disclose the data through the I-cache.
To develop this attack variant, we had to overcome several
challenges. In particular, the data dependent branches use
the branch predictor, but the I-cache footprint from this
branch is not data dependent because the value in the BTB
is not data dependent either. Thus, we had to initialize the
BTB to a third location, and then introduce sufficient delay

in the pipeline for the data dependent branch to be resolved
such that it registers the data dependent location in the I-
cache. Our working attack on the I-cache demonstrates the
need to protect the I-cache, which can be accomplished
similar to the D-cache.

o TLBs: we also conjectured that the TLBs may be used as
a covert channel vector. Essentially, the data dependent
access would target a page based on the value of the data,
causing the corresponding TLB entry to be initialized.
Later, we can check the time to access the page to see
if it results in a TLB miss or not to derive the commu-
nicated data. In fact, the translation pathway in modern
CPUs is quite complicated, as recent reverse-engineering
effort demonstrated [25]. The memory datapath includes
including additional translation caches, the page directory
entries and page table entries are also brought into the data
cache. Fortunately, the page walker uses the load-store
queue for these accesses, and the protection introduced
for the data caches ends up protecting these structures as
well, thus the additional protection is only needed for the
TLB itself.

attackMode <-- 0;
secret <-—- readSecret();
int (xfnPtr) [256 * 256];
for all ascii in (ASCII-character)
{
define int func_ascii() //noop sled
{
asm volatile (".rept 256;" "nop;"".endr;");
return 0;
}
(»fnPtr) [ascii * 256] <-- func_ascii
}
clflush(&arrayl_size);
clflush (fnptr);
function speculative (secret)
{
if (secret < arrayl_size)
gadgetFunc (secret, attackMode);
}
function gadgetFunc (secret, attackMode)
{
if (secret == 'A' && attackMode)
fnPtr[Ax256] ();

/7. for
// all AS
if (secret == 'z' && attackMode)
fnPtrz * 256]();
JjunkLoc () ;

}

for (i = 1...256)

{
tl = rdtscp();
junk = fnptr[i = 2561 (); //check cache hit
t2 = rdtscp();

Fig. 5. New I-cache variant of Spectre

Thus, we have to add shadow structures to protect these
three components of the memory system. In the remainder of
this section, we discuss the implementation and the sizing of
these structures from a performance perspective. We consider
both commit policies: WFB and WFC.

B. Implementing and Sizing Shadow Structures

To implement SafeSpec for the data cache, we add an
associatively-filled lookup table to hold speculatively read cache
lines. It is important to note that memory consistency models,
such as Total Store Order (TSO) semantics of the x86-64, often
ensure that store side-effects appear in order; in other words,
the cache is not updated until the store commits, making stores
robust to speculation attacks. We augment the load store queue
with a pointer to the shadow cache line for load operations that
are speculative. Any instruction dependent on the speculative
load reads the cache line from the shadow structure. Once the
load instruction commits, the shadow cache line is written to
the caches according to the inclusion policy of the caches (in
our case, since the caches are inclusive, it is written to all
levels of the cache) and freed in the shadow structure. If the
load is squashed, the value is freed in the shadow structure. For
the i-cache and the TLBs, we create similar shadow structures,
and augment the ROB with pointers to the shadow state entries
if the instruction is speculative and the cache line (or TLB
entry) were fetched speculatively.

From a performance perspective, the structures should be
sized such that they accommodate the speculative state needed
by representative workloads (e.g., measured empirically). If
the shadow structures are full, we could either drop some of
the shadow state (leading to loss of updates to the committed
state with performance, rather than correctness implications),
or block until there is space in the shadow state before
issuing an instruction (also with performance implications).
It is interesting to characterize the size of this state, but
we will see later that the constraints introduced by security
requirements to eliminate TSAs are more stringent than those
required by performance. Figures 6 and 7 show the distribution
of the size of the speculative state sampled over time for the
SPEC 2017 benchmarks for a processor configuration similar
to the Intel SkyLake processor. The shadow d-cache for 3 of
our benchmarks grows occasionally to almost the maximum
possible size (bound by the size of the load-store queue). A
shadow I-cache with about 25 cache lines is sufficient for
all of the benchmarks. Figures 8 and 9 show the speculative
TLB state for the same benchmarks. Less than 10 entries are
sufficient for speculative iTLB misses, but some benchmarks
require more d-TLB entries (up to 25). Overall, it is interesting
to observe that the benefit from doing WFB is small, so we
elect to support WFC to get the increased protection to cover
Meltdown. In the next section, we also show that to protect
against the potential of transient attacks in the shadow state,
we need to size the shadow state larger than what is required
just for performance.

V. TRANSIENT SPECULATION ATTACKS (TSAS): COVERT
CHANNELS IN THE SPECULATIVE STATE

The SafeSpec principle prevents direct side-channel leakage
from the speculative state to the committed state, closing all
known speculation attacks. However, although the committed
instructions and the speculative instructions eventually reside
in separate structures, creating the separation and closing the

mWFC mWFB

Number of shadow i-cache
entries

20 I
" I I I I I I I I I I I I I I I I
o lmlia
& © RN SO P d & &
SERIG AP P S LA TLFT DS 0
N F & ¥ P SR & ¢ P & € &
Qé\ & *?\e b& ep A f S § & ©

Fig. 6. Size of shadow i-cache that can fit 99.99% of the accesses

mnWFC mWFB

Number of shadow d-cache
entries
w
o

o I I I
I Pihbiel | ||||||| |
0 1
&
&€ z&?&@**@ 0 & c:{s@ ',eé"xfbe*"* o & &éf“é’&f °°v<‘i"b«°‘& *90&‘?
Nd R 5® &> &
& g FE T < ¢

Fig. 7. Size of shadow d-cache that can fit 99.99% of the accesses

channel, eventually committed instructions can start out as
speculative. During this window, the eventually committed
instructions share the shadow state with any speculative
instructions that will be squashed. If the shadow structures are
not designed carefully, covert channels can be created during
this transient window to communicate sensitive data (which
can only be read by a mis-speculated path) to an instruction
pathway that will be committed such that the leakage results
are visible to the program.

It is important to emphasize that these attacks (which we call
Transient Speculation Attacks, or TSAs) are substantially more
difficult than Spectre/Meltdown because there is only a limited
window of speculation in which the malicious Trojan code
must not only read sensitive data, but also create measurable
contention to the spy before either of their predicate branches
commits. In the Spectre attacks, malicious speculative code
(the Trigger) is only triggered with the responsibility to delay
the resolution of dependencies that the Trojan’s branch relies
on to allow the Trojan to read the privileged data and create
a dependent access in the cache. This access is later checked
by the spy code, at its own pace and outside the speculation
window used by the Trojan. In contrast, in TSAs, the full attack
has to happen within the speculation window during which
both the Trigger and the Spy must be executing. In other words,
the Trigger must also act as the Spy and receive the sensitive
data from the Trojan inside the speculation window, making
the attack substantially more difficult to perform.

The next question to consider is: what are the covert channels
available for TSAs to communicate between the Trojan and the
Spy? Since the primary processor structures are now separated
from the speculative state, the attackers can try to use the
shadow structures to communicate covertly. In particular, if the
shadow structures are shared and sized such that they enable
contention, they can be used for covert communication.

mWFC mWFB
3 50
s
S 40
]
E 30
.§ 20
2
2 10
[| 1
5 0 e S B oweome R . Dm0y .y
2
3 & S A > >
2 v“"\& (&&? &é&'@ é-d\&»&y *2@“504?0,,& &9 *\{\éz’é & Q"& & °%°&‘) & "éz"e
Qé\ & *?\o“ [D d,\“' Q of N o

Fig. 8. Size of shadow iTLB that can fit 99.99% of the accesses

mWFC nWFB
g 70
£ 60
H
g 50
5 40
% 30
3
£ 20 I
5 10
: l
5 o m m il .. -I--- e B o o . | S
3
& > >
E SELIFLP LIPS SAS S SF @ L & f
& F& TS o T T 58 5
& o 2 ¥ ¥ & ©

Fig. 9. Size of shadow dTLB that can fit 99.99% of the accesses

Consider an example where we size the TLB shadow
structures based on typical program behavior. Since programs
do not have many pending TLB misses within a speculation

window, it stands to reason to size these structures to be small.

In the rare case when the shadow structures are full, we may
handle this by either discarding updates or by blocking the

issue of requests when there is no room in the shadow structure.
Either of these behaviors provides potential for a covert channel.

Consider that the Trojan fills the structures with TLB misses
if it wants to communicate a 1. If updates are discarded, a
spy can detect a communication if its TLB accesses are not
committed (they were discarded). Alternatively, if we block
TLB accesses when the structures are full, the spy can detect
a communication of 1 if its TLB accesses are delayed causing

a longer TLB miss time. The attack is illustrated in Figure 10.

To prevent TSAs through the shadow structures, we can
either partition the structures such that there is no contention
among different speculative branches or we could provision
them generously (even for the worst case) to make sure that
transient contention cannot be created within a speculation
window. As a proof of concept, we elect this second approach
where we derive the maximum possible size of each shadow
structure and provision for this worst case. This approach
guarantees that no contention on the shadow structures is
possible, at the cost of provisioning fairly large associative
structures. We believe that with some more analysis, or with
some detection defense that detects an attack when the shadow
structures grow abnormally large, this worst case provisioning
can be substantially relaxed without introducing leakage.

VI. PERFORMANCE, SECURITY, AND OVERHEAD
EVALUATION

To evaluate the proposed SafeSpec design, we conduct
experiments with MARSSx86 (Micro Architectural and System

TABLE I
CONFIGURATION OF THE SIMULATED CPU
Parameter Configuration
CPU SkyLake
Issue 6-way issue
1Q 96-entry Issue Queue
Commit Up to 6 Micro-Ops/cycle
ROB 224-entry Reorder Buffer
iTLB 64-entry
dTLB 64-entry
LDQ 72-entry
STQ 56-entry
TABLE II
CONFIGURATION OF THE SIMULATED CPU MEMORY SYSTEM
Parameter Configuration
L1I-Cache 32 KB, 8-way, 64B line, 4 cycle hit
L1D-Cache 32 KB, 8-way, 64B line, 4 cycle hit

L2 Shared Cache
L3 Shared Cache
Memory

256 KB, 4-way, 64B line, 12 cycle hit
2 MB, 16-way, 64B line, 44 cycle hit
12 GB, 191 cycles

Simulator for x86) [26]. MARSSx86 is a fast cycle-accurate
full-system simulator that uses PTLsim [27] for CPU simulation
on top of the QEMU [28] emulator. It is targeted to simulate
cycle accurate out-of-order x86 cores. It allows users to
capture separate statistics of user mode and kernel mode
activities in a single simulation run. The CPU and cache model
configurations of MARSSx86 were modified to simulate Intel
Skylake processoras shown in Table I and Table II respectively.

A. Performance Analysis

The first experiment measures the performance of SafeSpec
compared to the baseline processor under conservative condi-
tion. In particular, we consider the shadow state access time
to be equivalent to the access time of the L1 cache (4 cycles),
when it is substantially smaller, and accessed as a lookup table.
Figure 11, shows the IPC values for all SPEC2017 benchmarks.
We see a small improvement in performance with a geometric
mean of about 3%. We believe that this advantage results
from a combination of effects including the larger effective
cache size and avoiding polluting the cache with wrong path
speculative state.

To gain more insight into the observed performance, Fig-
ure 12 shows the miss rate on read operations in the D-cache.
There is little difference in behavior between SafeSpec and the
baseline with respect to the data accesses. Figure 13 shows the
percentage of the reads that hit the shadow structures.

The I-cache behavior is significantly different than the D-
cache. Figure 12, and 14 shows the miss rate on the I-Cache.
For the I-cache, there are more substantial differences between
WEFC and the baseline. Some outlier behavior such as Pop2
and imagick where the percentage of i-cache misses drops
significantly could be due to the larger size of the shadow
structures expanding the effective size of the cache reducing
conflict and capacity misses. Moreover, we see in Figure 15 that
most of the hits occur in the shadow i-cache structure reflecting

(Step 1: Using a speculative execution that will commit
update the shadow structure

Speculative direction 1"@

that wil commit

Aand B if Secretis 1

1 Load ()
Load (B)

.
T Load () '
I Load (8) '

Step 2: Through mis-speculative execution: replace

Speculative direction +*,” ‘ﬁ

that will commit

~

Step 3: Through correct direction: time A and B
to know if the Secret value

@ Speculative direction, +,” ‘@

that will commit , ,%,#

1 Loag () '
1 Load(®) '

e SR
mgcs”p::u\auve m:;&e:ulaﬂve 2 Cmrecldwectvon@
 Socret - Unauthorized Accesst) 1 { Seorot = Unauhorized Access) 1 [TmeLoadia)
1 Load (Secret * replace_A) ' 1 Load (Secret” replace_A) 1 | Time(Loac(e)
1 Load (Secret ropiace_B) ' ! Load (Secrat” ropiaco.©) H
N J
Fig. 10. Transient Covert Channel Attacks
115 100%
11 .
105] 80%
g 1 8 60%
- 095 ©
& o9 3z 40%
Y $
g oéag £ 20%
2 o <
S SRS PSP S LAE Jb&z«?go&@&g@@& & & Z 0% . & N o & NN & > ‘
N & L IS o ¢S & & H & & R & FSE LSS TS LE S &8
& TF & D M & & TR IS & EESE & ¢
+? ¥ ¢ <
Fig. 11. Relative Performance to Non-secure OoO Execution . .
& Fig. 13. Percentage of hits on shadow d-cache
BWFC ®baseline
8 01 @ mWFC = baseline
5 g
w 008 ® 025
E} w
£ 2
5 006 £ 02
g
o 004 § 015
5 o
8 o002 I I I 5 01
L 3
8
0 - wl pil III- .I -éo.osl I i I
S & N SO R N s YO S S WU S S O A | | . - o o - i =
*é& &é‘@ﬁ‘&& & Qb'é\s’é v"’ip&‘? & Q"Q@ © q\v\@& & @@ﬁ“ (@@y & "Lﬂ&% 0 s & & % 2 oS D A E & & Q& P& @
& ETE FS & v v & ECRLTELE HIF ST F SIS S €S
Qé o@ *?\@e & e@s o d"’}' < o & < +

Fig. 12. d-cache read miss rates including the shadow d-cache

the high spatial locality of the access patterns in the i-cache;
in other words, while a cache line is still speculative, several
instructions execute from the same cache line. In contrast, the
D-cache has less spatial locality, resulting in fewer accesses
hitting the shadow state. We note that the cache miss rates
are combined for all instructions (i.e., we do not exclude
instructions that are squashed); therefore, many of these hits
in the shadow structures may not end up being productive.

To understand the benefits of the shadow structure in filtering
misspeculated accesses, Figure 16 shows the percentage of the
shadow state that ends up being committed for the I-cache and
the D-cache. We observe that a substantially higher percentage
of the D-cache state ends up being committed, perhaps due to
the fact that speculative loads are issued later in the pipeline
making them more likely to commit. For both the D-cache
and especially the I-cache, the shadow structure filters a large
number of misspeculated accesses that are squashed without
cluttering the caches.

B. Security Analysis

Table IIT shows that both WFC and WFB close Spectre
attacks, but only WFC is guaranteed to also stop Meltdown
attacks. We evaluated our proof of concept code implementing

Fig. 14. i-cache miss rate including the shadow i-cache

Spectre in the simulator and found indeed that the attack
fails under both WFC and WFB models. Table IV shows the
protection coverage for Spectre-style attacks targeting structures
other than the d-cache (I-cache, I-TLB, and D-TLB). All three
side channels were closed. We tested proof of concept code
for the I-cache and a transient attack through the D-cache and
observed that the attack fails on the SafeSpec protected CPU.

TABLE IIT
SECURITY ANALYSIS OF MELTDOWN/SPECTRE
WFC WFB
Meltdown v X
Spectre 1/2 v v
TABLE IV
COVERAGE OF SPECTRE STYLE ATTACKS ON DIFFERENT STRUCTURES
WFC WFB
I-cache v v
I-TLB v v
D-TLB v v
Transient v v

100%
o 80%
S
3 60%
E 40%
B
5 20%
§
2 0%
I &
FELIF P PSS SF LSS &8
& & L T e ® T TS 3
§ & & F & ©
Fig. 15. Percentage of hits on shadow i-cache
mi-cache md-cache
1
sDB
g
;Dé
EDA
£
o2
0
& §F & & P e AE S E PR E
PR g O FF LA LTS &8
&S P A &S S

Fig. 16. Commit rate of shadow state

We could not get TLB-based attacks working in the simulator,
perhaps because of the large delays of page walks, or due to
the limitations of the MarSSx86 models of the TLBs.

C. Hardware overhead

SafeSpec introduces hardware overheads to the CPU pipeline
due to the addition of the shadow structures. We compared
the hardware overhead for two different sizes for the shadow
structures; 1) Secure: shadow structure size equal to the
maximum speculative state during speculation; and 2) SafeSpec
with WFC: shadow structure sizes were optimized based on
99.99% speculative state size for SPEC2017 benchmarks using
the WFC implementation. We report the area, power, and access
time values, as well as a percentage compared to the Skylake
CPU L1 cache configuration (shown in Table II), using CACTI
v5.3 [29] in Table V. The results show that the area overhead
is tolerable for the secure design, making the design highly
practical.

VII. DISCUSSION, LIMITATIONS AND FUTURE DIRECTIONS

SafeSpec is a principled approach for protecting systems
from speculation attacks by preventing crossover leakage from
speculative instructions that will eventually be squashed to
permanent structures where they could be visible to attackers
through a side channel. By preventing this leakage, we close the
covert channel that is exploited by recent speculation attacks
such as Meltdown and Spectre. This general principle should
be applied to all speculatively modified state within a CPU.

SafeSpec requires a deep redesign of the CPU to separate
out the speculative state from the permanent state. It also has
implications on security: we identified a form of transient side
channels that occur through the shadow structures. The goal of
this paper is to establish the SafeSpec principle by protecting
the CPU caches and TLBs. We recognize that other structures
affected by speculative instructions must also be protected
using this principle or otherwise the attackers will switch to
using them. Future work should look at protecting the branch

10

TABLE V
SAFESPEC HARDWARE OVERHEAD AT 40NM.

Power (mW) Power (%) Area (mm?) Area (%)
Secure 290.27 26.4 9.79 17
WFC 35.14 3 1.17 2

predictor, DRAM buffers, account for prefetchers, as well as
other structures.

Another limitation of the current work is that we do not
support multi-threaded workloads. Addressing this limitation
involves two considerations. The more straightforward con-
sideration is how to preserve the semantics of protocols
such as cache coherence, memory consistency models, atomic
operations, and transactional memory. We believe that these
continue to operate in the same way by treating the speculative
state to be part of the state of the caches. The second issue
is significantly more difficult: these protocols themselves can
be used to communicate speculative side-effects as has been
recently shown by the MeltdownPrime attack [24]. Designing
leakage-free protocols is a difficult problem that deserves
separate and complete treatment and therefore we elected to
leave supporting multi-threaded workloads to future work.

We identified the problem of transient covert channels
that occur while instructions that will eventually commit
share the shadow structures with speculative instructions that
will not. In the window while both set of instructions are
speculative, they share the shadow state creating the potential
for covert communication. To prevent covert communication,
one approach is to size the shadow structures for the worst
case contention level and make them fully associative. This
worst case size is bound by the size of the load-store queue
for the d-cache and d-tlb, or the size of the reorder buffer for
the i-cache and the i-TLBs. While this pessimistic approach
guarantees no potential for leakage, more careful analysis can
show that a much smaller size will suffice given the transient
nature of the exposure.

We also characterized the size of the shadow state created by
normal program execution and showed that it is substantially
smaller than the worst case. Thus, we expected these large
shadow structures to be mostly unused providing opportunities
for dynamically resizing them for energy efficiency. In addition,
it is possible to use abnormal growth of the structures as an
indicator of a possible attack and introduce mitigations to stop
the attacks. This can also be explored in future work.

Speculation attacks challenge the foundation of out-of-order
microarchitectures which have been the key building blocks
of computer systems in the last several decades. Since these
attacks are very new and most of the proposed defenses
are at the software/firmware levels, CPU manufacturers and
microarchitecture researchers face an open challenge of how
to redesign speculative out-of-order processors to be immune
to speculation attacks. This paper represents a first step in this
direction that we hope will spur future research in this area.

VIII. RELATED WORK

After the disclosure of Spectre and Meltdown in January,
2018 [1], [2], [30], a number of defenses were suggested.
Intel proposed defenses: Intel released a whitepaper [31]
suggesting three types of defenses.

« To mitigate Spectre V1 attack, Intel recommends inserting
a LFENCE instruction after the branch as a barrier to
stop speculative execution. This defense mechanism has
now been adopted by compilers such as GCC [32] and
MSVC [33].

To mitigate Spectre V2 attack, Intel introduced three new
processor interfaces through microcode updates [34]:

— Indirect Branch Restricted Speculation (IBRS) prevents
software running in less privileged mode from impacting
the indirect branch prediction of software running in
more privileged mode (e.g., kernel and SGX enclave)
or on another logical processor.

Single Thread Indirect Branch Predictors (STIBP)
prevents software running on one logical processor from
impacting the indirect branch prediction of software
running on another logical processor or later on the
same logical processor of the same core.

Indirect Branch Predictor Barrier (IBPB) establishes a
barrier that prevents software running before the barrier
to affect the indirect branch prediction of software
running after the barrier.

To mitigate Meltdown attack, Intel recommends unmap-
ping more privileged domain (kernel space) during the
execution of less privileged software, which has been
adopted by all popular operating systems, including
Windows, Linux, and macOS.

All of these mitigation mechanisms require software modi-
fications or microcode updates, thus they can leave legacy
systems unprotected. More importantly, these protections
introduce non-negligible performance overhead which can
range from 0-2% [35] to 800% [10] depending from application
and hardware platform.

Kernel Page-Table Isolation (KPTI): Gruss et. al [8] in-
troduced a protection technique called KAISER to protect
against side channel attacks bypassing kernel level address
space randomization (KASLR) [36]. The protection is based
on complete separation of kernel and user page tables. As
a result, kernel and user programs exist in separate address
spaces, effectively mitigating side channel attacks. It has
been demonstrated that KAISER can effectively mitigate
Meltdown [1] which is stopped because user applications no
longer can perform speculative memory accesses to kernel
address space since the kernel is completely unmapped. Such
protection comes with a tangible performance overhead for
system calls and context switches, due to frequent TLB flushes.
As reported, the performance overhead can be as high as
800% [10] for system call intensive tasks, especially when
running on older processors without support for process-based
TLB tagging and selective invalidation. KAISER (also known
as KPTI) was included in the mainstream Linux kernel as a

11

response to the Meltdown attack [1]. The mitigation technique
cannot protect from any variation of the Spectre attack or when
Meltdown is performed within the same address space, for
example in case of software modules protected with software
fault isolation techniques [37], [38].

Return Trampoline (retpoline): retpoline [7] is a software-
based mitigation technique against indirect branch target
injection attack (i.e., Spectre V2). It “exploits” two properties
of the branch target prediction engine: (1) when executing a
ret instruction, the predictor will utilize the return stack buffer
(RSB) instead of the BTB; and (2) RSB cannot be polluted by
attackers. The retpoline technique essentially swaps indirect
branches for returns and deliberately pollutes the RSB with
a useless gadget to control speculative execution. Retpoline
protection requires access to source code and recompilation.
Poisonlvy: Poisonlvy [39] is an architectural solution to track
speculative data and prevent it from being exposed outside of
the chip. The threat model focuses on accessing data while
speculating on integrity verification. Their goal is different from
ours: they seek to prevent the data from being speculatively
read and therefore observed by a physical attacker that monitors
the memory bus. Poisonlvy supports this capability by using
information flow tracking to track data that is generated past
a speculative check or data that is dependent on it. SafeSpec
does not protect data from being speculatively exposed on
the memory bus; rather it prevents side channel leakage.
On the other hand, Poisonlvy does not prevent side channel
leakage from speculatively accessed data. Poisonlvy results in
approximately 20% slowdown in CPU performance.

Since the disclosure of the Spectre/Meltdown attacks, two
closely relevant attacks have also been reported [6], [24].
Utilizing a verification tool, Trippel et.al. [24] discovered that
by leveraging the invalidation message of cache coherence pro-
tocols, it is possible to replace Flush+Reload with Prime+Probe
to retrieve the content fetched by speculative instructions. In
the SGXPECTRE attack, Chen et.al. [6] demonstrated that it
is possible to steal secret information from an SGX enclave
using speculative execution.

IX. CONCLUDING REMARKS

We presented a general principle for supporting speculative
execution in a way that makes out-of-order processors immune
to speculation-based attacks. The principle relies on leaving
speculative state in shadow structures, and only committing this
state once the instructions that generate them are guaranteed to
commit. Thus, side-effects of misspeculation are hidden from
the primary structures of the CPU, closing the vulnerability.

We applied the principle to protecting caches and TLBs of the
CPU, which are the primary leakage vectors used in published
speculation attacks. Our design completely closes all three
published attacks, as well as new variants that we developed to
leak through the I-cache or the TLBs. We showed that careful
design is needed to prevent a form of leakage that can arise
while instructions share the speculative state. We mitigate
this leakage by sizing the speculative state conservatively.
Constructed this way, transient attacks also become impractical.

The performance of the SafeSpec CPU was actually slightly
higher than an unmodified CPU, despite conservative estimates
on the shadow state. We explored some of the reasons for the
differences in performance. First, the shadow state acts as an
extension of the caches, raising their size, and potentially their
bandwidth. Importantly, since misspeculated instructions do
not commit, this leads to less clutter in the cache, although we
lose out on some of the prefetching benefits of misspeculation.

We believe that the presented design represents a first step in
many towards a principled protection of speculative execution.
Our future work will consider these next steps that we discussed
in Section VIIL.

(1]

[2]

(3]
(4]

(3]

(6]

(7]
(8l

(]

[10]

(11]

[12]

[13]

[14]

(15]

[16]

(17]

[18]

REFERENCES

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
e-prints arXiv:1801.01207, 2018.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv e-prints arXiv:1801.01203, 2018.
J. Horn, “Reading privileged memory with a side-channel,” 2018.

G. Maisuradze and C. Rossow, “Speculose: Analyzing the secu-
rity implications of speculative execution in CPUSs,” arXiv preprint
arXiv:1801.04084, 2018.

D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over ASLR:
Attackiung branch predictors to bypass aslr,” in Proc. IEEE International
Symposium on Microarchitecture (MICRO), 2016.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre
attacks: Leaking enclave secrets via speculative execution,” arXiv preprint
arXiv:1802.09085, 2018.

P. Turner, “Retpoline: a software construct for preventing branch-target-
injection,” https://support.google.com/faqs/answer/7625886, 2018.

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Man-
gard, “Kaslr is dead: long live kaslr,” in International Symposium on
Engineering Secure Software and Systems, 2017.

L. Tung, “Linux meltdown patch: "up to 800 percent cpu overhead’,
netflix tests show,” Feb. 2018, zDNet article, accessed online April
2018 at https://www.zdnet.com/article/linux-meltdown- patch-up-to-800-
percent-cpu-overhead-netflix-tests-show/.

B. Gregg, “KPTI/KAISER meltdown initial performance regressions,”
2018.

O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: An
alternative to very large instruction windows for out-of-order processors,”
in High-Performance Computer Architecture, 2003. HPCA-9 2003.
Proceedings. The Ninth International Symposium on. IEEE, 2003.

D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Ponomarev et al.,
“Branchscope: A new side-channel attack on directional branch predictor,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2018.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “Drama:
Exploiting dram addressing for cross-cpu attacks.” in USENIX Security
Symposium, 2016.

C. Trippel, D. Lustig, and M. Martonosi, “Meltdownprime and spec-
treprime: Automatically-synthesized attacks exploiting invalidation-based
coherence protocols,” arXiv preprint arXiv:1802.03802, 2018.

E. Bloch, “The engineering design of the stretch computer,” in Papers
Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM
Computer Conference, 1959.

T.-Y. Yeh and Y. N. Patt, “Alternative implementations of two-level
adaptive branch prediction,” in ACM SIGARCH Computer Architecture
News, vol. 20, no. 2, 1992.

D. A. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,”
in Proc. International Symposium on High-Performance Computer
Architecture (HPCA), 2001.

A. Seznec, “TAGE-SC-L branch predictors,” in Proc. of the 4th
Championship on Branch Prediction (http://www.jilp.org/cbp2014/),
2014, accessed online April 2018 from, https://hal.inria.fr/hal-01086920/
document.

12

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33

[34]

[35]

[36]

[37]

[38]

[39]

O. Mutlu, Y. N. Patt, H. Kim, and D. N. Armstrong, “An analysis of the
performance impact of wrong-path memory references on out-of-order
and runahead execution processors,” IEEE Transactions on Computers,
vol. 54, 2005.

Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
13 cache side-channel attack.” in USENIX Security Symposium, 2014.
F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Security and Privacy (SP), 2015
IEEE Symposium on. 1EEE, 2015.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: a fast
and stealthy cache attack,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. ~ Springer, 2016.
S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented programming without returns,” in Pro-
ceedings of the 17th ACM conference on Computer and communications
security. ACM, 2010.

C. Trippel, D. Lustig, and M. Martonosi, “Meltdownprime and spec-
treprime: Automatically-synthesized attacks exploiting invalidation-based
coherence protocols,” arXiv preprint arXiv:1802.03802, 2018.

S. van Schaik, K. Razavi, B. Gras, H. Bos, and C. Giuffrida, “RevAnC:
A framework for reverse engineering hardware page table caches,”
in Proceedings of the 10th European Workshop on Systems Security
(EuroSec), 2017.

A. Patel, F. Afram, and K. Ghose, “Marss-x86: A gemu-based micro-
architectural and systems simulator for x86 multicore processors,” in /st
International Qemu Users Forum, 2011.

M. T. Yourst, “Ptlsim: A cycle accurate full system x86-64 microar-
chitectural simulator,” in Performance Analysis of Systems & Software,
2007. ISPASS 2007. IEEE International Symposium on. 1EEE, 2007.
F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, vol. 41, 2005.

P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache
timing, power, and area model,” 2001, technical Report 2001/2, Compaq
Computer Corporation.

J. Horn, “Reading privileged memory with a side-channel,”
https://googleprojectzero.blogspot.com/2018/01/reading- privileged-
memory-with-side.html, 2018.

Intel, “Intel analysis of speculative execution side channels,”
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-
Analysis-of-Speculative- Execution- Side-Channels.pdf, 2018.

L. H.J., “[patch 0/5] x86: Cve-2017-5715, aka spectre,” https://gcc.gnu.
org/ml/gcc-patches/2018-01/msg00422.html, 2018.

Microsoft, “Spectre mitigations in msvc,” https://blogs.msdn.microsoft.
com/vcblog/2018/01/15/spectre-mitigations-in-msve/, 2018.

Intel, “Speculative execution side channel mitigations,”
https://software.intel.com/sites/default/files/managed/c5/63/336996-
Speculative- Execution-Side-Channel-Mitigations.pdf, 2018.

N. Shenoy, “Firmware updates and initial performance data for data
center systems,” 2018.

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing smap and kernel aslr,” in Proceedings
of the 2016 ACM SIGSAC conference on computer and communications
security. ACM, 2016.

M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black, “Fast byte-granularity software fault isolation,”
in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. ACM, 2009.

D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee,
and B. Chen, “Adapting software fault isolation to contemporary cpu
architectures.” in USENIX Security Symposium, 2010.

T. S. Lehman, A. D. Hilton, and B. C. Lee, “Poisonivy: Safe specu-
lation for secure memory,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016.

