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ABSTRACT
This paper focuses on checking the correctness and robustness of
the AT command interface exposed by the cellular baseband proces-
sor through Bluetooth and USB. A device’s application processor
uses this interface for issuing high-level commands (or, AT com-
mands) to the baseband processor for performing cellular network
operations (e.g., placing a phone call). Vulnerabilities in this inter-
face can be leveraged by malicious Bluetooth peripherals to launch
pernicious attacks including DoS and privacy attacks. To identify
such vulnerabilities, we propose ATFuzzer that uses a grammar-
guided evolutionary fuzzing approach which mutates production
rules of the AT command grammar instead of concrete AT com-
mands. Empirical evaluation with ATFuzzer on 10 Android smart-
phones from 6 vendors revealed 4 invalid AT command grammars
over Bluetooth and 13 over USB with implications ranging from
DoS, downgrade of cellular protocol version (e.g., from 4G to 3G/2G)
to severe privacy leaks. The vulnerabilities along with the invalid
AT command grammars were responsibly disclosed to affected
vendors. Among the vulnerabilities uncovered, 2 CVEs (CVE-2019-
16400 and CVE-2019-16401) have already been assigned for the DoS
and privacy leaks attacks, respectively.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; Dis-
tributed systems security; Denial-of-service attacks.
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1 INTRODUCTION
Modern smartphones operate with two interconnected processing
units—an application processor for general user applications and a
baseband processor (also known as a cellular modem) for cellular
connectivity. The application processor can issue ATtention com-
mands (or, AT commands) [22] through the radio interface layer
(RIL, also called AT interface) to interact with the baseband pro-
cessor for performing different cellular network operations (e.g.,
placing a phone call). Most of the modern smartphones also accept
AT commands once connected via Bluetooth or USB.
Problem and scope. Since the AT interface is an entry point for
accessing the baseband processor, any incorrect behavior in pro-
cessing AT commands may cause unauthorized access to private in-
formation and inconsistent system states and crashes of the RIL dae-
mon and the telephony stack. This paper thus focuses on the follow-
ing research question: Is it possible to develop a systematic approach
for analyzing the correctness and robustness of the baseband-related
AT command execution process to uncover practically-realizable vul-
nerabilities? Incorrect execution of AT commands may manifest in
one of the following forms: (1) Syntactic errors: the device accepts
and processes syntactically invalid AT commands; and (2) Semantic
violations: the device processes syntactically correct AT commands,
but does not conform to the prescribed behavior. Successful ex-
ploitations of such invalid commands may enable malicious periph-
eral devices (e.g., a headset), connected to the smartphone over
Bluetooth, to access phones’s sensitive information, such as, IMSI
(International Mobile Subscriber Identity, unique to a subscriber)
and IMEI (International Mobile Equipment Identity, unique to a
device), or to downgrade the cellular protocol version or stop the
cellular Internet, even when the peripheral is only allowed to access
phone’s call and media audio.
Prior efforts. The previous research [43, 44, 53] strives to iden-
tify the types of valid AT commands (i.e., commands with valid
inputs/arguments conforming to 3GPP reference [1, 9, 11, 12, 52]
or vendor-specific commands [13, 14, 18, 21] added for vendor cus-
tomization) exposed through USB interfaces onmodern smartphone
platforms and the functionality they enable. Yet these studies have
at least one of the following limitations: (A) The analyses [53] do
not test the robustness of the AT interface in the face of invalid
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commands; (B) The analyses [53] only consider USB interface and
thus leave the Bluetooth interface to the perils of both valid and
invalid AT commands; and (C) The analyses [30, 43, 45, 49] are
not general enough to be applicable to smartphones from different
vendors.
Challenges. Conceptually, one can approach our problem using
one of the following two techniques: (1) static analysis; (2) dynamic
analysis. As the source code of firmwares is not always available, a
static analysis-based approach would have to operate on a binary
level. The firmware binaries, when available, are often obfuscated
and encrypted. Making such binaries amenable to static analysis
requires substantial manual reverse engineering effort. To make
matters worse, such manual efforts are often firmware-version spe-
cific and may not apply to other firmwares, even when they are
from the same vendor. Using dynamic analysis-based approaches
also often requires instrumenting the binary to obtain coverage
information for guiding the search. Like static analysis, such instru-
mentation requires reverse engineering effort which again is not
scalable. Also, during dynamic analysis, due to the separation of
the two processors, it is often difficult to programmatically detect
observable RIL crashes from the application processor. Finally, in
many cases, undesired AT commands are blacklisted [2–4] and
hence can cause rate-limiting by completely shutting down the AT
interface. The only way to recover from such a situation is to re-
boot the test device which can substantially slow down the analysis
process.
Our approach. In this paper, we propose ATFuzzer which can test
the correctness and robustness of the AT interface. One of the key
objectives driving the design ofATFuzzer is discovering problematic
input formats instead of just some misbehaving concrete AT com-
mands. Towards this goal, ATFuzzer employs a grammar-guided
evolutionary fuzzing-based approach. Unlike typicalmutation-based
[28, 35–37, 46, 59] and generation-based [20, 31, 54] fuzzers,ATFuzzer
follows a different strategy. It mutates the production rules of the AT
command grammars and uses sampled instances of the generated
grammar to fuzz the test programs.

Such an approach has the following two clear benefits. First, a
production rule (resp., grammar) describing a valid AT command
can be viewed as a symbolic representation for a set of concrete AT
commands. Such a symbolic representation enables ATFuzzer to
efficiently navigate the input search space by generating a diverse
set of concrete AT command instances for testing. The diversity of
fuzzed input instances is likely achieved because mutating a gram-
mar can move the fuzzer to test a different syntactic class of inputs
with high probability. Second, if ATFuzzer can find a problematic
production rule whose sampled instances can regularly trigger an
incorrect behavior, the production rule can then be used as a shred
of possible abstract evidence which can contribute towards the
identification of the underlying flaw causing the misbehavior.

ATFuzzer takes grammars of AT commands as the seed. It then
generates the initial population of grammars by mutating the seed
grammars. For each generated grammar,ATFuzzer samples grammar-
compliant random inputs and evaluate the fitness of each gram-
mar based on our proposed fitness function values of the samples.
Since code-coverage or subtle memory corruptions are not suitable
to be used as the fitness function for such vendor-specific closed
firmwares, we leverage the execution timing information of each

AT command as a loose-indicator of code-coverage information.
Based on the fitness score of each grammar, ATFuzzer selects the
parent grammars for crossover operation. We design a grammar-
aware two-point crossover operation to generate a diverse set of
valid and invalid grammars. After the crossover with a random
probability, we incorporate three proposed mutation strategies to
include randomness within the grammar itself. The intuition be-
hind using both crossover and mutation operations is for testing the
integrity of each command field as well as the command sequence.
Findings. To evaluate the generality and effectiveness of our ap-
proach, we evaluated ATFuzzer on 10 Android smartphones (from 6
different vendors) with both Bluetooth andUSB interfaces.ATFuzzer
has been able to uncover a total of 4 erroneous AT grammars over
Bluetooth and another 13 AT grammars over USB. Impacts of these
errors range from complete disruption of cellular network con-
nectivity to retrieval of sensitive personal information. We show
practical attacks through Bluetooth that can downgrade or shut-
down of Internet connectivity, and also enable illegitimate exposure
of IMSI and IMEI when such impacts are not possible to achieve
using valid AT commands. On top of that, the syntactically and se-
mantically flawed AT commands over USB may also cause crashes,
compound actions, and returns OK/ERROR while still getting pro-
cessed. For instance, an invalid AT command ATDI in LG Nexus
5 induces the program to execute two valid AT commands— ATD
(dial) and ATI (display IMEI), simultaneously. These anomalies add
a new dimension to the attack surface when blacklisting or access
control mechanisms are put in place to protect the devices from
valid yet menacing AT commands. The vulnerabilities along with
the invalid AT command grammars were responsibly disclosed to
affected vendors. Among the vulnerabilities unearthed, 2 CVEs
(CVE-2019-16400 [5] and CVE-2019-16401 [6]) have already been
assigned.
Contributions. The paper has the following contributions:

(1) We propose ATFuzzer— an automated and systematic frame-
work that leverages grammar-guided genetic programming
for dynamic testing of the AT command interface in modern
Android smartphones. We have made our framework open-
source alongside the corpus of AT command grammars we
tested. The tool and its detailed documentation are publicly
available at https://github.com/Imtiazkarimik23/ATFuzzer

(2) We show the effectiveness of our approach by uncovering 4
problematic AT grammars through Bluetooth and 13 prob-
lematic grammars through USB interface on 10 smartphones
from 6 different vendors.

(3) We demonstrate that all the anomalous behavior of the AT
program exposed through Bluetooth are exploitable in prac-
tice by adversaries whereas the anomalous behavior of AT
programs exposed through USB would be effectively ex-
ploitable even when valid but unsafe AT commands are
blacklisted. The impact of these vulnerabilities ranges from
private information exposure to persistent denial-of-service
attacks.

https://github.com/Imtiazkarimik23/ATFuzzer


Applications

Native	Daemons

/dev/ttyABCRILD

Modem
Driver

Baseband
Processor

User
Space

Kernel 
Space

Smartphone

/dev/ttyACM*	
				(Linux)

			COM*
(Windows)

Bluetooth	Application

Bluetooth	API

Bluetooth
Hal

Interface

Bluetooth
Stack

Application
Level

System	
Level

Smartphone

AT
command
Injector

Host	Machine/Bluetooth	
									Peripherals

Vendor
Configuration

Communication	
						channel

JNI

Rfcomm	
socket

RILD

Modem
Driver

Baseband
Processor

(a)	USB (b)	Bluetooth

Figure 1: AT Interface for Android Smartphones connected to a host
machine through USB interface

2 BACKGROUND
We now give a brief primer on AT commands. We then discuss how
we obtain the list of a smartphone-supported AT commands and
their respective grammars.

2.1 AT Commands
Along with the AT commands defined by the cellular standards [11],
vendors of cellular baseband processors and operating systems sup-
port vendor-specific AT commands [17, 18, 21] for testing and
debugging purposes. Based on the functionality, different AT com-
mands have different formats; differing in number and types of
parameters. The following are the four primary uses of AT com-
mands: (i) Get/read a parameter value, e.g., AT + CFUN? returns the
current parameter setting of +CFUNwhich controls cellular function-
alities; (ii) Set/write a parameter, e.g., AT + CFUN = 0 turns off (on)
cellular connectivity (airplane mode); (iii) Execute an action, e.g.,
ATH causes the device to hang up the current phone call; (iv) Test
for allowed parameters, e.g., AT + CFUN =? returns the allowed pa-
rameters for +CFUN command. Note that, +CFUN is a variable which
can be instantiated with different functionality (e.g., +CFUN=1 refers
to setting up the phone with full functionality).

2.2 AT Interfaces for Smartphones
AT commands can be invoked by an application running on the
smartphone, or from another host machine or peripheral device
connected through the smartphone’s USB or Bluetooth interface
(shown in Figure 1). While older generations of Android smart-
phones used to allow running AT commands from an installed
application, recent Android devices have restricted this feature to
prevent arbitrary applications from accessing device’s sensitive re-
sources illegitimately through AT commands. Contrary to installed
applications, nearly all Android phones allow executing AT com-
mands over Bluetooth, whereas, for USB, devices require minimal
configuration to set up to activate this feature. Android smart-
phones typically have different parsers for executing AT commands
over these interfaces.

2.3 Issuing AT Commands Over Bluetooth and
USB

In this section, we present the details pertaining to issuing AT
commands over Bluetooth and USB.

2.3.1 Bluetooth. For executing AT commands over Bluetooth,
the injecting host machine/peripheral device needs to be paired

with the Android smartphone. The Bluetooth on a smartphone may
have multiple profiles (services), but only certain profiles e.g. hands-
free profile (HFP), headset profile (HSP) supports AT commands.
Figure 1 (right) shows the flow of AT command execution over
Bluetooth.

When a device is paired with the host machine, it establishes and
authorizes a channel for data communication. After receiving an
AT command, the system-level component of the Bluetooth stack
recognizes the AT command with the prefix "AT" and compares
it against a list of permitted commands (based on the connected
Bluetooth profile).When the parsing is completed, the AT command
is sent to the application-level component of the Bluetooth stack
in user space where the Bluetooth API takes the action as per the
AT command issued. Similar to the example through USB, if a
baseband related command is invoked e.g.,ATD <phone_no>;, the
RILD is triggered to deliver the command to the baseband processor.
Contrary to USB, only a subset of AT commands related to specific
profiles is accepted/processed through Bluetooth.

2.3.2 USB. If a smartphone exposes its USB Abstract Control
Model (ACM) interface [49], it creates a tty device such as /dev/tty-
ACM0 which enables the phone to receive AT commands over the
USB interface. On the other hand, in phones for which the USB
modem interface is not included in the default USB configuration,
switching to alternative USB configuration [49] enables communi-
cation to the modem over USB. The modem interface appears as
/dev/ttyACM* device node in Linux whereas it appears as a COM*
port in Windows. Figure 1 (left) shows the execution path of an AT
command over USB.

When the AT command injector running on a host machine sends
a command through /dev/ttyACM* or COM* to a smartphone, the
ttyABC (ABC is a placeholder for actual name of the tty device) de-
vice in the smartphone receives the AT command and relays it to
the native daemon in the Android userspace. The native daemon
takes actions based on the type of command. If the command is
related to baseband, e.g., ATD <phone_no>;, the RILD (Radio In-
terface Layer Daemon) is triggered to deliver the command to the
baseband processor which executes the command– makes a phone
call to the number specified by <phone_no>. On the other hand, if
the command is operating system-specific (e.g., Android, iOS, or
Windows), such as +CKPD for tapping a key, the native daemon
does not invoke RILD.

2.4 AT Commands and Their Grammars
We obtain the list of valid AT commands and their grammars from
the 3GPP standards [1, 8–12, 52]. Note that, not every standard AT
commands are processed/recognized by all smartphones. This is
because different smartphone vendors enforce different whitelist-
ing and blacklisting policies for minimizing potential security risks.
Also, vendors often implement several undocumented AT com-
mands. Any problematic input instances that ATFuzzer finds, we
check to see whether it is one of the vendor-specific, undocumented
AT commands following the approach by Tian et al. [53]. We do
not report as invalid the undocumented, vendor-specific AT com-
mands that ATFuzzer discovers since they have already been docu-
mented [53]. We aim at finding malformed AT command sets that
are due to the parsing errors in the AT parser itself.



3 OVERVIEW OF OUR APPROACH
In this section, we first present the threat model and then for-
mally define our problem statement. Finally, we provide a high-level
overview of our proposed mechanism with a running example.

3.1 Threat Model
For Bluetooth and USB AT interfaces exposed by modern smart-
phones, we define the following two different threat models.

3.1.1 Threat model for Bluetooth. For the threat model over Blue-
tooth, we assume a malicious/compromised Bluetooth peripheral
device (e.g. headphones, speaker) is paired to anAndroid device over
Bluetooth. We assume the malicious Bluetooth device is connected
through its default profile. For instance, the victim smartphone
which is connected to the malicious headphone has only given
audio permissions to the headphone. Also, there can be the case
when the adversary sets up a fake peripheral device through the
man-in-the-middle (MitM) attacks exploiting known vulnerabilities
of Bluetooth pairing and bonding [7, 39, 51] procedures. We do not
assume the presence of malicious apps on the device.

3.1.2 Threat model for USB. For USB, we assume a malicious USB
host, such as a PC or USB charging station controlled by an ad-
versary, that tries to attack the connected Android phone via USB.
We assume the attacker can get access to the exposed AT interface
even if the device is inactive. We also neither require a malicious
app to be installed on the device nor the device’s USB debugging to
be turned on.

3.2 Problem Statement
Let I be the set of finite strings over printable ASCII characters,
R = {ok, error} denoting the parsing status, and A be a set of
actions (e.g., phone-call ∈ A). The AT interface of a smartphone
can be viewed as a function P from I to R × 2(A∪{nop,⊥}), that
is, P : I → R × 2(A∪{nop,⊥}) in which nop refers to no operation
whereas ⊥ captures undefined behavior including a crash. nop
is used to capture the behavior of P ignoring an AT command,
possibly, due to blacklisting or parsing errors.

Given the smartphone AT interface under test PTest and a refer-
ence AT interface induced by the standard PRef , we aim to identify
concrete vulnerable AT command instances s ∈ I such that PTest
and PRef do not agree on their response for s , that is, PRef(s) ,
PTest(s). Given pairs ⟨r1,a1⟩, ⟨r2,a2⟩ ∈ R × 2(A∪{nop,⊥}), we write
⟨r1,a1⟩ = ⟨r2,a2⟩ if and only if r1 = r2 and a1 = a2. Note that, a1
and a2 are both sets of actions as one command can mistakenly
trigger multiple actions.

Note that, there can be a reason PRef and PTest can legitimately
disagree on a specific input AT command s ∈ I as s can be black-
listed by PTest. Due to CVE-2016-4030 [2], CVE-2016-4031 [3], and
CVE-2016-4032 [4], Samsung has locked down the exposed AT
interface over USB with a command whitelist for some phones.
In this case, we do not consider s to be a vulnerable input in-
stance. Precisely, when s is a blacklisted command, we observed
that PTest often returns ⟨ok, nop⟩. Finally, we instantiate the oracle
PRef through manual inspection of the standard.

3.3 Running Example
To explain ATFuzzer’s approach, we now provide a partial, example
context-free grammar (CFG) of a small set of AT commands (see
Figure 3 for the grammar and Figure 2 for the partial Abstract Syntax
Tree (AST) of the grammar) which we adopted from the original
3GPP suggested grammar [11, 52]. In our presentation, we use the
bold-faced font to represent non-terminals and regular-faced font
to identify terminals. We use “·” to represent explicit concatenation,
especially, to make the separation of terminals and non-terminals in
a production rule clear. We use [. . . ] to define regular expressions
in grammar production rules and [. . . ]∗ to represent the Kleene
star operation on a regular expression denoted by [. . . ]. In our
example, Dnum can take as an argument any alphanumeric string
up to length n. Our production rules are of the form: s→ α · B1{ϕ}
where α denotes a terminal, B1 represents a non-terminal, and ϕ
represents a condition that imposes additional well-formedness
restrictions on the production.

In the above example, we show the correct AT command format
for making a phone call. Examples of valid inputs generated from
this grammar can be— ATD ∗ 752# + 436644101453;

3.4 Overview of ATFuzzer
In this section, we first touch on the technical challenges that
ATFuzzer faces and how we address them. We conclude by pro-
viding the high-level operational view of ATFuzzer.

3.4.1 Challenges. For effectively navigating the input search space
and finding vulnerable AT commands, ATFuzzer has to address the
following four technical challenges.
C1: (Problematic input representation). The first challenge is to ef-
ficiently encode the pattern of problematic inputs. It is crucial as
the problematic AT commands that have similar formats/structures
but are not identical may trigger the same behavior. For instance,
both ATD123 and ATD1111111111 test inputs are problematic (nei-
ther of them is a compliant AT command due to missing a trailing
semicolon) and have a similar structure (i.e., ATD followed by a
phone number), but are not the same concrete test inputs. While
processing these problematic AT commands, one of our test devices,
however, stops cellular connectivity. Mutation in the concrete input
level will require the fuzzer to try a lot of inputs of the same vulner-
able structure before shying away from that abstract input space.
This may limit the fuzzer from testing diverse classes of inputs.
C2: (Syntactic correctness). As shown in Figure 3, most of the AT
commands have a specific number and type of arguments, e.g.,
+CFUN= has two arguments: CFUNarg1 and CFUNarg2. The
second challenge is to effectively test this structural behavior and
type, thoroughly by generating diverse inputs that do not comply
with the command structure or the argument types.
C3: (Semantic correctness). Each argument of an AT command may
have associated conditions. For instance, Lenдth(Dnum) ≤ n in
the fifth production rule of Figure 3. Also, arguments may correlate
with each other, such as, one argument defines a type on which
another argument is dependent. For instance, +CTFR= refers to
a service that causes an incoming alert call to be forwarded to a
specified number. It takes four arguments— the first two of them
are number and type. Interestingly, the second argument defines
the format of the number given as the first argument. If the dialing



command

AT cmd

dgrammarcmd_AT +CFUN? cfungrammar

DnumD Darg CFUNarg1+CFUN	= CFUNarg2;cmd cmd

[a-zA-Z0-9+*#]* GI [0-9]* [0-1]

...
...

...
...

... ...

Figure 2: Partial Abstract Syntax Tree(AST) of the reference grammar (Grey-box denotes non-terminal symbols and white box indicates ter-
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command→ AT · cmd
cmd→ dgrammar | cfungrammar
cmd→ ϵ | cmd_AT

cmd_AT→ cmd ; cmd
dgrammar→ D · Dnum · Darg ;

cfungrammar→ +CFUN? | +CFUN =CFUNarg1, CFUNarg2
cmd→ +CTFR = number, type, subaddr, satype

Dnum→ [a − zA − Z 0 − 9 + ∗#]∗ {Lenдth(Dnum) ≤ n }
Darg→ I | G | ϵ

CFUNarg1→ [0 − 9]∗ {CFUNarg1 ∈ Z and 0 ≤ CFUNarg1 ≤ 127}
CFUNarg2→ [0 − 1] {CFUNarg2 ∈ Z and 0 ≤ CFUNarg2 ≤ 1}
number1 → number1 | number2
number2 → [a − zA − Z 0 − 9 + ∗#]∗ {if type = 145}
number→ [a − zA − Z 0 − 9 ∗ #]∗ {if type = 129}

type→ 145 |129
subaddr→ [a − zA − Z 0 − 9 + ∗#]∗
satype→ [0 − 9]∗ {if satype = ϵ, satype = 128}

.

.

.

Figure 3: Partial reference context-free grammar for AT commands.

string includes access code character “+”, then the type should be
145, otherwise, it should be 129. These correlations are prevalent in
many AT commands. Hence, the third challenge is to systematically
test conditions associated with the arguments of commands to
cover both syntactical and semantic bugs.
C4: (Feedback of a test input). The AT interface can be viewed as
a black-box providing only limited output of the form: OK (i.e.,
correctly parsed) or ERROR (i.e., parsing error). The final challenge
is to devise a mechanism that can provide information about the
code-coverage of the AT interface for the injected test AT command
and thus effectively guides us through the fuzzing process.

3.4.2 Insights on addressing challenges. For addressing C1, we use
the grammar itself as the seed of our evolutionary fuzzing frame-
work rather than using a particular instance (i.e., a concrete test
input) of the grammar. This is highly effective as the mutation of a
production rule can influence the fuzzer to test a diverse set of in-
puts. Also, when a problematic grammar is identified, it can serve as
abstract evidence of the underlying flaw in the AT interface. Finally,
as grammar can be viewed as a symbolic representation of concrete
input AT commands, mutating a grammar can enable the fuzzer
to cover large diverse classes of AT commands. The insight here
is that testing diverse input classes are likely to uncover diverse
types of issues.

To address challenges C2 and C3, at each iteration, ATFuzzer
chooses parents with the highest fitness scores and switches parts
of the grammar production rules among each other. This causes

changes to not only the structural and type information in the child
grammars but also forms two very different grammars that try to
break the correlation of the arguments. For instance, suppose that
the ATFuzzer has selected following two production rules from two
different parent grammars: +CFUN = CFUNarg1,CFUNarg2
and +CTFR = number, type, subaddr, satype. After applying
our proposed grammar crossover mechanisms, the resultant child
grammar production rules are: +CFUN = CFUNarg1, type, subaddr,
satype and +CTFR = number CFUNarg2. The production rule
+CFUN takes only two arguments whereas our new child gram-
mar creates a production rule that has four arguments. The same
reasoning also applies for +CTFR. Thus the new grammars with
modified production rules would test this structural behavior pre-
cisely. Furthermore, +CTFR’s first argument number is correlated
with its second argument type. In the modified child grammars,
type, however, has been replaced withCFUNarg2. Recall from our
grammar definition, type takes argument from the set {145, 129}
whereas +CFUNarg2 takes argument from the set {0, 1}. There-
fore, this single operation completes two tasks at once— it not only
tests the correlation among two arguments of +CTFR but also tests
conditions of both +CFUN and +CTFR. Crossing over grammar
production rules creates a higher change in the input format and
it aims to explore the diverse portions of the input space to create
highly unusual inputs. To test both the structural aspects, we use
three very different mutation strategies which create little change
to the grammar (compared to crossover) but prove highly effective
for checking the conditions associated with commands.

For addressing C4, we use the precise timing information of
injecting an AT command and receiving output. We keep an upper
bound on this time, i.e., a timer (T ). If the output is not received
within T , we suspect the AT interface has become unresponsive
possibly due to the blacklisting mechanism enforced by several
vendors. We use this timing information as a loose-indicator for
the code-coverage information. Our intuition is to explore as much
of the AT interface as possible. Higher timing loosely indicates
that the test command traverses more basic-blocks than the other
inputs with lower timing. We try to leverage this simple positive
correlation to design a feedback edge (i.e., a fitness function) of
the closed-loop. The timing information, however, cannot help to
infer how many new basic-blocks a test input could explore. Since
our focus is mainly on baseband related AT commands, an error
in the AT interface has a higher probability of causing disruptions
in the baseband which also trickles down to cellular connectivity.



Figure 4: Overview of ATFuzzer framework

We leverage this key insight and consider both the cellular Internet
connectivity information from the target device and the device’s
debug information (Logcat) as an indication of the baseband health
after running an AT command. Using this information, we devise
our fitness function for guiding ATFuzzer.

3.4.3 High-level description of ATFuzzer. ATFuzzer comprises of
two modules, namely, evolution module and evaluation module, in-
teracting in a closed-loop fashion (see Figure 4). The evolution
module is bootstrapped with a seed AT command grammar which
is mutated to generate Psize (refers to population size, a parame-
ter to ATFuzzer), different versions of that grammar. Concretely,
new grammars are generated from parent grammar(s) by ATFuzzer
through the following high-level operations: (1) Population initial-
ization; (2) Parent selection; (3) Grammar crossover; (4) Grammar
mutation. Particularly relevant is the operation of parent selection
in which ATFuzzer uses a fitness function to select higher-ranked
(parent) grammars for which to apply the crossover/mutation oper-
ations (i.e., steps 3 and 4) to generate new grammars. Choosing the
higher-ranked grammars to apply mutation is particularly relevant
for generating effective grammars in the future.

Evaluating fitness function requires the evaluation module. For
a given grammar д, evaluation module samples several д-compliant
commands to test. It uses the AT command injector (as shown in
Figures 1 and 4) to send these test commands to the device-under-
test. The fitness function uses the individual scores of the concrete
д-compliant instances to assign the score to д.

4 ATFuzzer: DETAILED DESIGN
In this section, we discuss our proposed crossover and mutation
techniques for the evolution module followed by the fitness function
design used by the evaluation module.

4.1 Evolution Module
Given the AT grammar (shown in Figure 3), ATFuzzer’s evolution
module randomly selects at most n cmds to generate the initial
seed AT grammar denoted as GAT. The evolution module yields the
grammars Gbest with the highest scores until a certain stopping

condition is met, such as, total time of testing or the number of
iterations. Algorithm 1 describes the high-level steps of ATFuzzer’s
evolution module.

4.1.1 Initialization. The evolution module starts with initializing
the population P (Line 1 in Algorithm 1) by applying both our
proposed crossover and mutation strategies with three parame-
ters: the population size Psize; the probability Ppop of applying
crossover and mutation on the grammar; the tournament size Tsize.
The key-insight of using Ppop is that it correlates with the number
of syntactic and semantic bugs explored. The higher the value of
Ppop is, the diverse the initial population is and vice versa. The di-
verse the initial population is, the higher the number of test inputs
that check syntactic correctness is and vice versa. Therefore, to ex-
plore both syntactic and semantic bugs, we vary the values of Ppop
aiming to strike a balance between grammar diversity. To assess
the fitness, the evolution module invokes the evaluation module
(Line 3-8) with the generated grammars.
Algorithm 1: ATFuzzer
Data: Psize , Ppop , GAT , Tsize
Result: Gbest : Best Grammar

1 P← InitializePopulation(Psize, Ppop, GAT);
2 while stopping condition is not met do
3 for each grammar Gi ∈ P do
4 Generate random input I
5 AssesFitness(Gi, I)
6 if Fitness(Gi) > Fitness(Gbest) then
7 Gbest = Gi ;
8 end
9 end

10 Q = {}

11 for
Psize
2 times do

12 Pa ← ParentSelection(P, Tsize)
13 Pb ← ParentSelection(P, Tsize)
14 Ca, Cb ← GrammarBasedCrossover(Pa, Pb)
15 Q = Q ∪ {Mutate(Ca), Mutate(Cb)}

16 end
17 P← Q
18 end

4.1.2 Parent selection for the next round. We use the tournament
selection technique to get a diverse population at every round. We
perform “tournaments” among P grammars (Line 12-13 in Algo-
rithm 1). The winner of each tournament (the one with the highest



fitness score) is then selected for crossover and mutation. In what
follows, we discuss in detail our tournament selection technique
addressing the functional and structural bloating problems of evo-
lutionary fuzzers [54].
Restraining functional bloating. We leverage another insight
in selecting grammars at each round of the tournament selection
procedure to reduce functional bloating [54]— the continuous gen-
eration of grammars containing similar mutated production rules—
which adversely affects diverse input generation in evolutionary
fuzzing. At each round, we randomly select grammars from our
population. This is due to the fact that while running an evolu-
tionary fuzzing, the range of fitness values becomes narrow and
reduces the search space it focuses on. For example, at any round,
if the fuzzer finds a grammar that has a mutated production rule
related to +CFUN causing an error state in the AT interface, then
all the grammars containing this mutated rule will obtain high
fitness values. If we then only select parents based on the highest
fitness, we would inevitably fall into functional bloating and would
narrow down our focused search space with grammars that are
somehow associated with this mutated version of +CFUN only.

To constraint this behavior, we perform the tournament selection
procedure in which we randomly choose Tsize (where T denotes
the set of selected grammars for the tournament and Tsize ≤ Psize)
number of grammars from the population P. The key insight of
choosing randomly is to give chances to the lower fitness grammars
in the next round to ensure a diverse pool of candidates with both
higher and lower fitness scores.
Restraining structural bloating. After running ATFuzzer for a
while, i.e., after a certain number of generations, the average length
of individual grammar grows rapidly. This behavior is character-
ized as structural bloating. Referring to the AT grammar in Figure 3,
multiple cmds (production rules) can contribute to generating the
final commands that are sent to the AT command injector for eval-
uation. These commands can grow indefinitely, but do not induce
any structural changes, and thus cause structural bloating. These
input commands, therefore, hardly contribute to the effectiveness
of the fuzzer. To limit this behavior, we restrict the grammar to
have at most three cmds at each round to generate the input AT
commands for testing.

+CFUN	=	CFUNarg1				,	CFUNarg2															
																								

+CTFR	=		number,									type	,subaddr,	satype	

c1 c2

+CFUN	=	number									,	CFUNarg2															
																								

+CTFR	=		CFUNarg1,			type	,subaddr,	satype	

c1 c2

Figure 5: Examples of one-point and two-point grammar cossover
mechanisms.

4.1.3 Grammar crossover. In the grammar crossover stage,ATFuzzer
strives to induce changes in the grammar aiming to systematically
break the correlation and structure of the grammar. For this, we
take inspiration from traditional genetic programming and apply
our custom two-point crossover technique among the grammars.
Two-point crossover. ATFuzzer picks up two random production
rules from the given parent grammars and generates two random
numbers c1 and c2 within ℓ where ℓ is the minimum length between
the two production rules. ATFuzzer then swaps the fields of the two
production rules that are between points c1 and c2.

Figure 5 shows how ATFuzzer performs the two-point crossover
operation on production rules +CTFN = and +CTFR = (a subset
of the AT grammar in Figure 3) used for controlling the cellular
functionalities and for urgent call forwarding, respectively. By ap-
plying two-point crossover on +CFUN = CFUNarg1,CFUNarg2
and +CTFR = number, type, subaddr, satype, ATFuzzer gener-
ates+CFUN =number, CFUNarg2 and+CTFR = CFUNarg1, type,
subaaddr, satype which in turn contribute in generating versatile
inputs.
Algorithm 2: Two-Point Grammar Crossover
Data: ParentGrammar Pa , ParentGrammar Pb
Result: Pa ,Pb

1 Randomly pick production rule Ra from Pa and Rb from Pb
2 Ra ← Ra1 , Ra2 , ..., Ral
3 Rb ← Rb1 , Rb2 , ..., Rbm
4 c1 ← random integer chosen from 1 tomin(l,m)
5 c2 ← random integer chosen from 1 tomin(l,m)
6 if c > d then
7 swap c1 and c2
8 end
9 for i from c to d − 1 do
10 swap grammar rules of Rai , Rbi
11 end

Negating	a	production	rule

Adding	a	production	rule

satype,	

+CTFR type,	subaddr,satype

+CTFR	=	number,type, subaddr,satype

+CTFR=	number,	type,	subaddr,	satype

Trimming	a	production	rule

+CTFR	=	number, subaddr,satype

=	number	

Figure 6: Example of three grammar mutation strategies.

4.1.4 Grammar mutation. During crossover operation, ATFuzzer
constructs grammars that may have diverse structures which are,
however, not enough to test the constraints and correlations as-
sociated with a command and its arguments. This is due to the
fact that AT commands have constraints not only with the fields
but also with the commands itself. Therefore, generating versa-
tile grammars that can generate such test inputs is an important
aspect of ATFuzzer design. To deal with this pattern, we propose
three mutation strategies— addition, trimming, and negation. We
use AT + CTFR = number, type, subaddr, satype (one of the exam-
ple grammars presented in Figure 3) to illustrate these mutation
strategies with examples shown in Figure 6.
Addition.With our first strategy we randomly insert/add a field
chosen from the production rule of the given grammar at a random
location. For instance, applying this mutation strategy (shown in
Figure 6) to one of the grammars +CTFR = number, type, subaddr,
satype yields +CTFR = number, type, satype, subaddr, satype con-
taining an additional argument added after the second argument
of the actual grammar. The mutation also has changed the type
(string) of third argument (subaddr) of the actual grammar to inte-
ger (satype) in the new grammar. ATFuzzer, thereby, tests the type
correctness along with the structure of the grammar.
Trimming. Our second mutation strategy is to randomly trim an
argument from a production rule for the given grammar. Referring
to Figure 6, applying this to our example grammar for +CTFR,
we obtain a production rule AT + CTFR = number, subaddr, satype



which also deviates from the original grammar with respect to both
the structure and type.
Negation. Our last mutation strategy focuses on the constraints
associated with the arguments of a command. Referring to the AT
grammar in Figure 3, we encode the constraints with additional
conditions (denoted with {. . . }) in the grammar production rules.
With the negation strategy, we randomly pick a production rule of
the grammar and choose a random argument that has a condition
associated with it. We negate the condition which we use to replace
the original one at its original place in the production rule. Figure 6
demonstrates how we negate the production rule associated with
number used to represent a phone number. The number is a string
type with a constraint on its length. We negate this condition with
the following three heuristics: (i) Generating strings that are longer
than the specified length; (ii) Generating strings that contain not
only alphanumeric characters but also special characters; and (iii)
Generating an empty string.
Algorithm 3: Grammar Mutation
Data: Grammar Ga , Tunable parameters : Pα , Pβ , Pγ
Result:Mutated Ga

1 Randomly pick production rule Ra fromGa
2 Ra ← Ra1 , Ra2 , ..., Ral
3 c ← random integer chosen from 1 to l
4 P ← Generate random probability from (0, 1)
5 if Pα ≥ P then
6 trim argument Rac from production rule Ra
7 end
8 if Pβ ≥ P then
9 replace Pc {ϕ } with Pc {¬ϕ }in production rule Ra

10 end
11 if Pγ ≥ P then
12 d ← random integer chosen from 1 to l
13 add argument Pac at position l in production rule Ra
14 end

4.2 Evaluation Module
The primary task of the evaluation module is to generate a number
of test inputs (i.e., concrete AT command instances) for the grammar
received from the evolution module. It then evaluates the test inputs
with the AT command injector, and finally evaluate the grammar
itself based on the scores of the generated test inputs. To what
follows we explain how the evaluation module calculates the fitness
score of a grammar.

4.2.1 Fitness evaluation. At the core of ATFuzzer is the fitness
function that guides the fuzzing and acts as a liaison for the coverage
information. We devise our fitness function based on the timing
information and baseband related information of the smartphone.
Our fitness function comprises of two parts: (1) Fitness score of
the test inputs generated from a grammar; (2) Fitness score of the
grammar in the population.
Fitness score of the test inputs of a grammar. The fitness eval-
uator of ATFuzzer generates N inputs from each grammar and
calculates the score for each input. We define this fitness function
for an input AT command instance x as:

fitness(x) = α × timingscore + (1 − α) × disruptionscore
where α is a tunable-parameter that controls the impact of

timingscore and disruptionscore. Let tx be the time required for
executing an AT command x (0 ≤ x < N ) on the smartphone
under test. Execution time of an AT command is defined as the time

between when the AT command is sent and when the output is
received by the AT command injector. Note that, we normalize the
execution time with input length.

Let t1, t2, ..., tN be the time for executing N AT commands, we
define the timing score for instance x in a population of size N as

follows: timingscore =
ti

t1 + t2 + .... + tN
.

Note that while running AT commands over Bluetooth, the com-
mands and their responses are transmitted in over-the-air (OTA)
Bluetooth packets. To compute the precise execution time of the
AT command on the smartphone, we take off the transmission and
reception times from the total running time. Also, to make sure
Bluetooth signal strength change does not interfere with the timing
information, our system keeps track of the RSSI (Received Signal
Strength Indication) value and carries out the fuzzing at a constant
RSSI value.

We define disruptionscore based on the following four types of
disruption events: (i) Complete shutdown of SIM card connectiv-
ity; (ii) Complete shutdown of cellular Internet connectivity; (iii)
Partial disruption in cellular Internet connectivity; (iv) Partial dis-
ruption of SIM card connectivity with the phone. For cases (i) and
(ii), complete shutdown causes denial of cellular/SIM functionality,
recovery from which requires rebooting the device. ATFuzzer uses
adb reboot command which takes ∼ 15 − 20 seconds to restart the
device without entailing any manual intervention. On the contrary,
partial shutdown for the cases (iii) and (iv) induce denial of cellu-
lar/SIM functionality for ∼ 3 − 5 seconds and thus does not call for
rebooting the device to recuperate back to its normal state. These
events are detected and monitored using the open-source tools
available to us from Android, e.g., logcat, dumpsys, and tombstone.
While injecting the AT commands we use these tools to detect
the events on run time. We take into account if there is a crash in
the baseband or the RIL daemon. We assign a score between 0 − 1
to a disruption event in which 0 denotes no disruption at all (i.e.,
the device is completely functional) with no adverse effects and 1
denotes complete disruption of cellular or SIM card connectivities.
Fitness score of a grammar. After computing the fitness scores
for all the concrete input instances, we calculate the grammar’s
score by taking the average of all instance scores.

5 EVALUATION
Our primary goal in this section is to evaluate the effectiveness
of ATFuzzer by following the best possible practices [26, 55] and
guidelines [34]. We, therefore, first discuss the experiment setup
and evaluation criteria, and then evaluate the efficacy of our proto-
type against the widely used AFL [59] fuzzer— customized for our
context.

5.1 Experiment Setup
ATFuzzer setup. We implemented ATFuzzer with ∼4000 lines of
Python code. We encoded the grammars (with JSON) for a corpus
of 90 baseband-related AT commands following the specification in
the 3GPP [11] documentation and extracting some of the vendor-
specific AT commands following the work of Tian et al. [53]. During
its initialization, ATFuzzer receives as input the name of the AT
command, retrieves the corresponding grammar that will be used



as the seed (GAT in algorithm 1) from the file, generates the initial
grammar population and realizes the proposed crossover and muta-
tion strategies. Hence, our approach is general and easily adaptable
to other structured inputs, since it is not bound to any specific
grammar structure. Since testing a concrete AT command instance
requires 15-20 seconds on average (because of checking the cellu-
lar and SIM card connectivity after executing a command and for
rebooting the device in case of AT interface’s unresponsiveness for
blacklisting), we set Psize to 10 which we found through empiri-
cal study to be the most suitable in terms of ATFuzzer’s stopping
condition. Following the same procedure, we test 10 concrete AT
commands in each round for a given grammar. We set the proba-
bility Ppop to 0.5 to ensure uniform distribution in the grammar
varying ratio.

Conceptually, one can argue about testing at a “batch” mode
to chop the average time for fuzzing a AT grammar. For instance,
injecting 10 AT commands together and then checking the cellular
and SIM connectivity at once. Though This design philosophy is
intuitive, but fails to serve our purpose due to the following fact.
Though it may be able to detect permanent disruptions, it is unable
to detect temporary disruptions to cellular or SIM connectivity. For
instance, even if the second AT command in the batch induces a
temporary disruption, there will be no trace of disruptions at all
by the time when the tenth (i.e., the last) AT command will be
executed.
Target devices. We tested 10 different devices (listed in Table 1)
from 6 different vendors and with 6 different android versions
to diversify our analysis. For Bluetooth, we do not require any
configuration on the phone. For running AT commands over USB
some phones require additional configuration. For additional details,
see Appendix A.1.

Device Android
Version

Build
Number

Baseband
Vendor

Baseband USB Config OS Interface

Samsung
Note2

4.3 JSS15J.
I9300XU
GND5

Samsung
Exynos
4412

N7100DD
UFND1

None Linux Bluetooth
and
USB

Samsung
Galaxy
S3

4.3 JSS15J.
I9300XX
UGND5

Samsung
Exynos
4412

I9300XX
UGNA8

None Linux Bluetooth
and
USB

LG G3 6.0 MRA58K Qualcomm
Snap-
dragon
801

MPSS.DI.2.0.1.
c1.13-00114
-M8974AA
AAANPZM-
1.43646.2

None Linux Bluetooth
and
USB

HTC
Desire 10
lifestyle

6.0.1 1.00.600.1
8.0_g
CL800193
release-
keys

Qualcomm
Snap-
dragon
400

3.0.U205591
@60906G_01.
00.U0000. 00_F

sys.usb.config
mtp,adb,diag,
modem, mo-
dem_mdm,
diag_mdm

Windows Bluetooth
and
USB

LG
Nexus 5

5.1.1 LMY48I Qualcomm
Snap-
dragon
800

M8974A-
2.0.50.2.26

sys.usb.config
diag,adb

Linux Bluetooth
and
USB

Motorola
Nexus 6

6.0.1 MOB30M Qualcomm
Snap-
dragon
805

MDM9625_
104662.22.
05.34R

fastboot oem bp-
tools-on

Windows Bluetooth
and
USB

Huawei
Nexus 6P

6.0 MDA89D Qualcomm
Snap-
dragon
810

.2.6.1.c4-
00004-M899
4FAAAAN
AZM-1

fastboot oem
enable-bp-tools

Windows Bluetooth
and
USB

Samsung
Galaxy
S8+

8.0.0 R16NW.G95
5USQU5CRG3

Qualcomm
Snap-
dragon
835

G955US
QU5CRG3

None Linux Bluetooth
and
USB

Huawei
P8 Lite
ALE-L21

5.0.1 ALE-
L21CO2B140

HiSilicon
Kirin 620
(28 nm)

22.126.12.00.00 None None Bluetooth

Pixel 2 8.0.0 OPD3.1708
16.012

Qualcomm
MSM8998
Snap-
dragon
835

g8998-00122-
1708231715

None None Bluetooth

Table 1: List of the devices we tested, with software information,
USB configuration required and the operating system we used to
fuzz each device.

5.2 Evaluation Criteria
ATFuzzer has three major components— grammar crossover, mu-
tation and feedback loop— to effectively test a target device. We,
therefore, aim to answer the following research questions to evalu-
ate ATFuzzer:
• RQ1: How is the bug-finding capability of ATFuzzer over
Bluetooth?
• RQ2: How is the bug-finding capability of ATFuzzer over
USB?
• RQ3: How effective is our grammar-aware crossover?
• RQ4: How effective is our grammar-aware mutation?
• RQ5: When using grammars, how much does the use of
timing feedback increase fuzzing performance?
• RQ6: Is ATFuzzer more efficient than other state-of-the-art
fuzzers for testing AT interface?

To tackle RQ1-RQ2, we let our ATFuzzer run over USB and Blue-
tooth each for one month to test 10 different smartphones listed
in Table 1. ATFuzzer has been able to uncover a total of 4 erro-
neous AT grammars inducing a crash, downgrade and information
leakage over Bluetooth and 13 erroneous AT grammars over USB.
Based on the type of actions and responses to the problematic AT
command instances, we initially categorize our results as syntactic
and semantic problematic AT grammars, and further categorize the
syntactically problematic grammars into three separate classes— (i)
responds okwith composite actions; (ii) responds okwith an action;
and (iii) responds errorwith an action. Here, an action can be either
crash (i.e., any disruption event defined in Section 4), leakage of
any sensitive information, or executing a command, e.g., hanging
up a phone call.

We summarize ATFuzzer’s findings for Bluetooth in Table 2 and
for USB in Table 3. To answer the research questions RQ3-RQ5,
we evaluate ATFuzzer by disabling one of its components at a time.
We create three new instances of ATFuzzer— ATFuzzer without
crossover, ATFuzzer without mutation, and ATFuzzer without fit-
ness evaluation. To what follows we evaluate these three variants
with the AT grammar (in Figure 3) and compare their efficacy of dis-
covering bugs against original ATFuzzer. Moreover, to answer the
research question RQ5, we create our variation of AFL (American
Fuzzy Lop). To perform a fair comparison, we run all our experi-
ments on Nexus5 for each variations of ATFuzzer and our version
of AFL each for 3 days.

5.3 Findings Over Bluetooth (RQ1)
Unlike USB, Bluetooth does not require any pre-processing or con-
figuration to the phone to execute AT commands. Besides this,
over-the-air Bluetooth communications are inherently vulnerable
to MitM attacks [7, 39, 51]. All these enable the adversary to read-
ily exploit the vulnerabilities over Bluetooth with sophisticated
attacks.

5.3.1 Results. We first discuss the results that relate to invalid AT
commands and then we discuss the attacks and impacts of both
invalid and valid AT commands.
(1) Syntactic errors – responds ok with actions. ATFuzzer un-
covered four problematic grammars in these categories in seven
different Android smartphones. We observer that the target device



Class of
Bugs

Grammar and Command Instance action/implication Nexus5 LG G3 Nexus6 Nexus6P HTC S8plus S3 Note2 Huawei P8lite Pixel 2

Syntatctic –
returns OK
with action

cmd→D.Dnum.Darg1.Darg2
Dnum→[A − Z 0 − 9 + #]∗
Darg1→I |G |ϵ
Darg2→;. Darg3
Darg3→[A, B, C]+
E.g. ATD + 4642048034I;AB;C

crash/internet connectiv-
ity disruption

✓ ✓

cmd→D.Dnum.Darg1.Darg2
Dnum→[A − Z 0 − 9 + #]∗
Darg1→I |G |ϵ
Darg2→;. Darg3
Darg3→[A, B, C]+
E.g. ATD + 4642048034I;AB;C

crash/downgrade ✓ ✓

cmd→+CIMI.Arg1
Arg1→[a − zA − Z 0 − 9 + #]∗
E.g. AT + CIMI; ; ; ; abc

read/IMSI leak ✓ ✓ ✓

cmd→+CGSN.Arg1
Arg1→[a − zA − Z 0 − 9 + #]∗
E.g. AT + CGSN; ; ; ; abc##

read/IMEI leak ✓ ✓ ✓

Correctly
formatted
command

cmd→+CIND? read/leaks call status,
call setup stage, internet
service status, signal
strength, current roam-
ing status, battery level,
call held status

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

cmd→+CHUP execution (cutting phone
calls)/ DoS

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

cmd→Arg.D.Dnum.Darg;
Arg→[a − zA − Z ]
Dnum→[a − zA − Z 0 − 9 + ∗#]∗
Darg→I |G |ϵ
E.g. ATD ∗ ∗61 ∗ +1812555673 ∗ 11 ∗ 25#;

execution/ call forward-
ing, activating do not dis-
turb mode, activating se-
lective call blocking

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Summary of ATFuzzer’s Bluetooth parser findings.

responds to the invalid AT command and also performs an action.
For instance, ATFuzzer found a specific variant of ATD grammar
ATDA;A;B in Nexus5 which is syntactically incorrect, but returns
OK and make the cellular Internet connectivity temporarily un-
available. Beside this, the concrete instances of the same grammar
also downgrade the cellular connectivity from 4G to the 3G/2G in
Nexus6 and Nexus6P smartphones thus entails severe security and
privacy impacts.

5.3.2 Attacks with invalid AT commands. We now present three
practical attacks that can be carried out using the invalid grammars
uncovered through ATFuzzer.
Denial of service. The adversary using a malicious Bluetooth
peripheral device (e.g., Bluetooth headphone with only call audio
and media permissions) or a MitM instance may exploit the invalid
AT command, e.g., ATDB;A;B and temporarily disrupt the Internet
connectivity of the Pixel 2 and Nexus 5 phones. To cause long term
disruptions in Internet connectivity, the adversary may inject this
command intermittently and thus prevent the user from accessing
the Internet. Note that there is no other valid AT command that
controls the Internet connectivity over Bluetooth and thus it is not
possible to achieve this impact using a valid AT command.
Downgrade. The same invalid grammar (shown in table 2) ex-
ploited in the previous DoS attack in Nexus 5 phone can also be
exploited to downgrade the cellular connectivity on Nexus6 and
Nexus6P phones. Similar to previous DoS attack, such downgrade
of cellular connectivity is not possible with any valid AT commands
running over Bluetooth. Downgrade (also known as bidding-down)
attacks have catastrophic implications as they open the avenue
to perform over-the-air man-in-the-middle attacks in cellular net-
works [25, 40].
IMSI & IMEI catching. ATFuzzer uncovered the invalid varia-
tions (AT + CIMI; ; ; ; ; abc and AT + CGSN123df) of two valid AT
commands (+CIMI and +CGSN) which enable the adversary to
illegitimately capture the IMSI and IMEI of a victim device over

Bluetooth. Exploiting this, any Bluetooth peripheral connected to
the smartphone can surreptitiously steal such important personal
information of the device and the network. We have successfully
validated this attack in Samsung Galaxy S3, Samsung Note 2 and
Samsung Galaxy S8+. One thing to be noted here, after manual
testing we found out the valid versions of these two commands
also leak IMSI and IMEI. We argue that even if there is a black-
list/firewall policy put into place to stop the leakage through valid
AT commands, yet it will not be sufficient because it will leave the
scope to use the invalid versions of the command (that ATFuzzer
uncovered) to expose this sensitive information.

The impact of this attack is particularly more fatal than that
of the previous two attacks. This is because the illegitimate ex-
posure of IMSI and IMEI through Bluetooth provides an edge to
the adversary to further track the location of the user or intercept
phone calls and SMS using fake base stations [32, 33] or MitM re-
lays [50]. Samsung has already acknowledged the vulnerabilities
and is working on issuing patches to the affected devices. We also
summarize the findings of ATFuzzer in Table 2. CVE-2019-16401 [6]
has been assigned to this vulnerability along with other sensitive
information leakage for the affected Samsung devices.

5.3.3 Attacks with valid AT commands. We summarize ATFuzzer’s
other findings in which we demonstrate that the exposed AT inter-
face over Bluetooth allows the adversary to run valid AT commands
to attain malicious goals that may negatively affect a device’s ex-
pected operations. The results are particularly interesting as Blue-
tooth interface has yet not been systematically examined.
Information leak. The adversary can use a valid AT command to
learn the whole set of private information about the phone. The
malicious Bluetooth peripheral device can get the call status, call
setup state, Internet service status, the signal strength of the cellular
network, current roaming status, battery level, and call hold status
for the phone using this valid AT commands.



DoS attacks. A malicious peripheral can exploit the AT + CHUP
command to prevent the victim device to receive any incoming
phone call. From the previous information leakage (e.g., call status)
attack, an attacker can probe periodically to detect whether there
is a phone call or not. Whenever he detects there is a phone call,
the attacker injects AT + CHUP to cut the phone call. To make the
matters worse, the attack is transparent to the victim, i.e., there
is no indication on the mobile screen that an attack is going on.
The victim device user perceives either there is no incoming call or
abrupt call drops due to poor signal quality or network congestions.
CVE-2019-16400 [5] has been assigned for this along with other
reported denial of service attacks in Samsung phones.
Call forwarding. If the victim device is subscribed to call for-
warding service, the adversary may exploit the ATD command to
forward victim device’s incoming calls to an attacker-controlled
device. Exploiting this, the adversary first prevents the victim de-
vice from receiving the incoming calls and then learns sensitive
information, such as password or pin for two-factor authentication
possibly sent by an automated teller. Note that such call forwarding
is also transparent to the user since the user is unaware of any
incoming calls.
Activating do not disturbmode. The adversary using a malicious
Bluetooth peripheral or MitM instance can turn on the do not dis-
turb mode of the carrier through ATD command. Similar to call
forwarding attack, it is also completely transparent to the user as
no visible indication of do not disturb mode is displayed on the
device. While the user observes all the network status bars and the
Internet connectivity, the device, however, does not receive any call
from the network.
Selective call blocking. A variation of the previous attack is also
possible in which the adversary may allow the victim phone to
receive selective calls by intermittently turning on/off the do not
disturb mode. This may force the user to receive calls only from
selective users not affecting others.

5.4 Findings over USB (RQ2)
We now discuss findings over USB.
(1) Syntactic errors – responds okwith composite actions. It is
one of the interesting classes of problematic grammars for which the
AT interface of the affected devices respond to invalid AT commands
with ok, but performs multiple actions together. These invalid com-
mands are compositions of invalid characters and two valid AT com-
mands with no semicolon as their separator. For instance, ATFuzzer
generated an invalid command ATIHD + 4632048034; using two
valid grammars for ATD and ATI (as shown in Figure 3) and in-
valid characters for which the target device returns ok but places
a phone call to 4632048034 and shows the manufacturer, model
revision, and IMEI information simultaneously.
(2) Syntactic errors – responds ok with an action. In this type
of syntactically problematic grammars, the target device responds
to an invalid command instance with ok but performs an action.
For instance, the grammar cmd →Arg1. I .Arg2 in Table 3 can
be instantiated with an invalid command instance ATHIX which
returns sensitive device information.
(3) Syntactic errors – responds error with an action. In this
class of syntactic errors, the AT interface recognizes the inputs as

faulty by acknowledging with error, but it still executes the action
associated with the command and even does worse by crashing
the RIL daemon and inducing complete disruptions in the cellular
Internet connectivity. It basically reveals a fundamental flaw in the
AT interface— if a command is considered as erroneous, it should
not be executed. For example, the grammar cmd→D . Dnum in
Table 3 can be instantiated with ATD+4632048034 (a variation of
the ATD production rule in Figure 3) which is supposed to start a
cellular voice call. Instead, the grammar returns error in the form of
NO CARRIER and induces the cellular Internet connectivity to go
down completely for a certain amount of time (15-20 seconds). We
have also found grammars for which the device returns other error
statuses, e.g., ERROR, NO CARRIER, CME ERROR, ABORTED, and
NOT SUPPORTED, but still executes those invalid commands.
(4) Semantic errors. This class of grammars conforms with the
input pattern defined by the standards [11], but induces disrup-
tions in the cellular connectivity for which the recovery requires
rebooting the device. The grammars of this class are shown in Table
3.
Possible exploitation. It may appear that the implications of in-
valid AT commands over USB are negligible as compared to the
valid AT commands which may wreak havoc by taking full control
of the device. We, however, argue that if AT interface exposure
is restricted through blacklisting the critical and unsafe valid AT
commands by the parser in the first place, the adversary will still
be able to induce the device to perform same semantic function-
alities using invalid AT commands. This is due to the uncovered
vulnerabilities for which the parser will fail to identify the invalid
AT commands as the blacklisted commands and thus allows the
adversary to achieve same functionalities as the valid ones.

5.4.1 Efficacy of grammar-aware crossover (RQ3). ATFuzzer with-
out crossover (by disabling the crossover in ATFuzzer) uncovered
only 3 problematic grammars as compared to ATFuzzer with all
proposed crossover and mutations (Table 4). This is due to the fact
that ATFuzzer without crossover cannot induce enough changes in
the structure and type of the arguments of parent grammars, as a
result of which it reduces the search space.

5.4.2 Efficacy of grammar-aware mutation (RQ4). Since ATFuzzer
without mutation cannot induce changes in the arguments and the
respective conditions, it uncovered only 2 problematic grammars.
ATFuzzerwithout crossover, however, performs slightly better than
that of the ATFuzzer without crossover. This also justifies our in-
tuition that mutation strategies play a vital role in any fuzzer as
compared to crossover techniques. Without mutation, a fuzzer un-
likely generates interesting inputs for the system under test.

5.4.3 Efficacy of timing feedback (RQ5). Weobserved thatATFuzzer
without feedback performs better than the other two (RQ2 and RQ3)
variations. ATFuzzer without feedback uncovered 5 problematic
grammars and thus is less effective than ATFuzzer with feedback.
AT interface being a complete black box with little to no feedback
we had to resort to various creative ways including timing informa-
tion to generate feedback score. However, This resorts to an upper
bound for the coverage information and loosely dictates ATFuzzer.

5.4.4 Comparison with other state-of-the-art fuzzer (RQ6). We com-
pare the effectiveness of ATFuzzer against AFL (American Fuzzy



Class of
Bugs

Grammar and Command Instance action/implication Nexus5 LG G3 Nexus6 Nexus6P HTC S8plus

Syntatctic
–returns
OK with
composite
actions

cmd→I.Arg.D.Dnum.Darg;
Arg→[a − zA − Z ]
Dnum→[a − zA − Z 0 − 9 + ∗#]∗
Darg→I |G |ϵ
E.g. ATIHD + 4642048034I;

read, execution/ leaks
manufacturer, model
revision and IMEI

✓ ✓ ✓ ✓ ✓

cmd→+COPN; Arg
Arg→[i |I ]∗
E.g. AT + COPN; III

read/ leaks list of opera-
tors, manufacturer, model
revision and IMEI

✓ ✓ ✓ ✓

Syntatctic –
returns OK
with an ac-
tion

cmd→Arg1.I.Arg1
→[X |H ]
E.g. ATHIX

read/ leaks manufacturer,
model revision and IMEI

✓ ✓ ✓ ✓ ✓

cmd→Arg1.I.Arg1.Arg1
Arg1→X
E.g. ATXIX

read/ leaks manufacturer,
model revision and IMEI

✓ ✓ ✓

cmd→Arg1.Arg2.Arg3
Arg1→+CIMI | I | +CEER
Arg2→∗|;
Arg3→Q|Z
E.g. AT + CIMI ∗Q

read/ leaks IMSI, manu-
facturer, model revision
and IMEI

✓ ✓

cmd→+CLCC;Arg1
Arg1→[a − zA − Z 0 − 9]∗
E.g. AT + CLCC;ABC123

read/leaks current call list ✓ ✓ ✓ ✓ ✓

cmd→Arg1; Arg2
Arg1→+COPN | +CGMI |
+CGMM | +CGMR
Arg2→[X |E]
E.g. AT + COPN;X

read/leaks list of opera-
tors, IMEI, model and re-
vision information of the
device

✓ ✓ ✓ ✓ ✓ ✓

Syntatctic –
returns ER-
ROR with
an action

cmd→Arg1.Arg2.Arg3
Arg1→+CIMI | I | +CEER
Arg2→; |∗
Arg3→ˆ[Q |Z ]
E.g. ATI; L

read/ leaks IMSI, manu-
facturer, model revision
and IMEI

✓ ✓ ✓ ✓

cmd→Arg1; Arg2
Arg1→+COPN | +CGMI |
+CGMM | +CGMR
Arg2→ˆ[X |E]
E.g. AT + CGMM;O

read /leaks list of opera-
tors, IMEI, model and re-
vision information of the
device

✓ ✓ ✓ ✓

cmd→Arg.D.Dnum.Darg;
Arg→[a − zA − Z ]
Dnum→[a − zA − Z 0 − 9 + #]∗
Darg→I |G |ϵ
E.g. ATMD + 4632048034

crash/ internet connectiv-
ity disruption

✓

cmd→+CUSD=,String
String→[a − zA − Z 0 − 9 + ∗#]∗
E.g. AT + CUSD =, ABC

crash/ internet connec-
tion disruption

✓ ✓

Semantic –
returns OK
with an ac-
tion

cmd→+CCFC=Arg1,Arg2,Arg3,
145,32,Arg4,13,27
Arg1→[1 − 5]
Arg2→[1 − 2]
Arg3→[0 − 9]∗
Arg4→[a − zA − z0 − 9]∗
E.g. AT + CCFC = 3, 2, 732235, 145,
32, cA4{NYv, 13, 27

crash/ internet connectiv-
ity disruption

✓ ✓ ✓

cmd→+COPS = 0,Arg1,Arg2,2
Arg1→[0 |1]
Arg2→[a − zA − z]∗
E.g. AT + COPS = 0, 1, c19v6fC, 2

crash/internet connectiv-
ity disruption

✓

Table 3: Summary of ATFuzzer’s findings over USB.

Lop) [59]. Since current versions of AFL require instrumenting the
test programs, we implemented a modest string fuzzer that adopts
five mutation strategies (walking bit flips, walking byte flips, known
integers, block deletion and block swapping) employed by AFL and
incorporated our proposed timing-based feedback loop to it. We
evaluate this AFL variant with 80 different seeds (consisting of valid

and invalid command instances of randomly chosen 40 different
AT reference grammars).

Table 4 shows that the AFL variant uncovered 2 different prob-
lematic grammars whereas ATFuzzer uncovers 9 unique grammars
after running for 3 days. Though we decided to compare our tool
with AFL, which is the best choice we had as AFL is considered the
state-of-the-art tool for fuzzing, we do not claim the comparison to



Fuzzing Approach Problematic Grammars
ATFuzzer 9

ATFuzzer w/o feedback 5
ATFuzzer w/o crossover 3
ATFuzzer w/o mutation 2

Modified AFL 2

Table 4: Result obtained with different fuzzing approaches on
Nexus5 over a period of 3days for each approach.

be ideal. Because AFL relies heavily on code average information
and for our case, we replaced the coder coverage with the best
available substitute, i.e., coarse-grained timing information as a
loose indicator to code coverage. We acknowledge that this is a
best-effort approach and the evaluation may be sub-deal.

6 RELATEDWORK
In this section, wemainly discuss the relevant work on the following
four topics: AT commands, mutation-based fuzzing, grammar-based
mutation, grammar-based generation.
AT commands. Most of the previous work related to AT com-
mands follow investigate how an adversary can misuse valid AT
commands to attack various systems. The work from Tian et al.
[53] can be considered the most relevant to our work, however, it is
significantly different in the following three aspects: (i) Firstly, they
only show the impact of AT commands over USB as they consider
the functionality and scope of AT commands over Bluetooth too lim-
ited to study. We, however, demonstrate the dire consequences of
AT commands over Bluetooth interface with the uncovered invalid
and valid AT commands. (ii) Secondly, they only show the impact of
valid AT commands whereas we demonstrate the impact of invalid
AT commands exploring different attack surfaces. (iii) Finally, one
of the primary objectives of our work is to test the robustness of the
AT interface, which is a different and complimentary end objective
than theirs.

BlueBug [24] exploits a Bluetooth security loophole on few
Bluetooth-enabled cell phones and issues AT commands via a covert
channel. It, however, relies on the Bluetooth security loophole to
attack and does not apply to all phones. In contrast, we have demon-
strated a variety of attacks using valid and invalid AT commands
running over Bluetooth which do not rely on any specific Bluetooth
assumptions and also applicable to all the modern smartphones
we had in our corpus. Injecting AT commands on android base-
band was previously discussed on the XDA forum [23]. Pereira
et al. [43, 45] used AT commands to flash malicious images on
Samsung phones. Hay [29] discovered that AT interface can be
exploited from Android bootloader and discovered new commands
and attacks using the AT interface. AT commands have been used to
exploit modems other than smartphones as well. Most prominently,
USBswitcher [44, 49] and [43] demonstrate how these commands
expose actions potentially causing security vulnerabilities in smart-
phones. Some other work use AT commands as a part of their tool,
for instance, Mulliner et al. [42] use the AT commands as feedback
while fuzzing SMS of phones. Xenakis et al. [57, 58] devise a tool
using AT commands to steal sensitive information from baseband.
None of them, however, actually analyzes or discovers bugs in the
AT parser itself.

Mutation based fuzzers. Initial mutation-based fuzzers [41] used
to mutate the test inputs randomly. To make this type of fuzzers
more effective, a huge amount of work has been carried out to de-
velop sophisticated techniques to improvemutation strategies— cov-
erage information through instrumenting the binary [28, 36, 37, 59];
resource usage information [35, 46]; control and data flow features
[48]; static vulnerability prediction models [38]; data-driven seed
generation [55]; high-level structural representation of seed file
[47]. There are also a few mutation-based fuzzers that incorporate
the idea of grammars rather than inputs. Wang et al. [56] use gram-
mars to guide mutation whereas Aschermann et al. [26] rely on
code coverage feedback. Simulated annealing power schedule with
genetic fuzzing has also been incorporated in [27]. However, due
to the black-box nature of our system and structural pattern of AT
command inputs, none of the existing concepts suffice fuzzing AT
parser.
Generation-based fuzzers. Generation based fuzzers generate
inputs based on a model [19, 20, 31, 54], specification or defined
grammars. However, to the best of our knowledge, no fuzzer discov-
ers a class of bugs at the grammar-level, rather generates concrete
input instances. There are also some generation-based, more pre-
cisely, defined grammar-based fuzzers [16] [15] which use manually
specified grammars as inputs. For instance, Mangeleme is an auto-
mated broken HTML generator and fuzzer, and Jsfunfuzz [15] uses
specific knowledge about past and present vulnerabilities and uses
grammar rules to produce inputs that may cause problems. Both of
them are, however, random fuzzers.

7 DISCUSSION
Defenses.Our findings show that current implementations of base-
band processors and AT command interfaces fail to correctly parse
and filter out some of the possible anomalous inputs. In this paper,
we do not explicitly explore defenses for preventing malicious users
from exploiting these flaws. However, we show that restricting the
AT interface through access control policies, black-listing should
not work due to the parsing bugs and invalid AT commands, that
the parser executes. Completely removing the exposure of AT mo-
dem interface over Bluetooth and USB can resolve the problem.
Other than that at a conceptual level, having a formal grammar
specification of the supported AT command grammar may provide
a better way to test implementations of the AT interface. Another
aspect that requires particular attention is the deployment of stricter
policies that filter out anomalous AT commands.
Responsible disclosure. Given the sensitive nature of our find-
ings, we have reported these to the relevant stakeholders (e.g.,
respective modems and devices vendors and manufacturers). More-
over, following the responsible disclosure policy we have waited
90 days before making our findings public. Currently to our knowl-
edge Samsung has been working to issue a patch to mitigate the
vulnerabilities.

8 CONCLUSION AND FUTUREWORK
The paper proposes ATFuzzer for testing the correctness of the
AT interface exposed by the baseband processor in a smartphone.
Towards this goal, ATFuzzer leverages a grammar-guided evolu-
tionary fuzzing-based approach. Unlike generational fuzzers which



use the input grammar to generate syntactically correct inputs,
ATFuzzer mutates the production rules in the grammar itself. Such
an approach enables ATFuzzer to not only efficiently navigate the
input search space but also allows it to exercise a diverse set of
input AT commands.
Future work. In the future, we want to apply hybrid fuzzing in
our problem domain. In the hybrid fuzzing paradigm, a black-box
fuzzer’s capabilities are enhanced through the use of lightweight
static analysis (e.g., dynamic symbolic execution, taint analysis).
Such an approach would, however, require us to address the issues
concerning firmware binaries’ practice of employing obfuscation
and encryption.
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A APPENDIX
A.1 Target Devices Configuration.
In this section, we provide additional detailed information about
the required set up for the devices we tested.

Some of the devices we tested expose their modem functional-
ity by default and therefore required no additional configuration
(also listed in Table 1). On the other hand, for the devices that do
not expose any modem, it was necessary to root them and set a
specific type of USB configuration. The USB configuration can be
changed by setting sys.usb.config property. All the devices can be
accessed through ADB (Android Debug Bridge) and Fastboot tools.
With ADB it is possible to access the device’s file system, reboot
it in different modes, such as bootloader mode, rooting it, and
finally change the device’s properties directly with the command
setprop <property-name> <value>. With fastboot, it is possible
to operate the device in bootloader mode, install new partitions
and change pre-boot settings required for rooting. For LG Nexus 5,
we had to set sys.usb.config from the default “mnt,adb” to “diag,adb”
through adb shell. This setting allows to access the phone in

diagnosticmode and therefore to communicate with the AT com-
mand interface. For Motorola Nexus 6 and Huawei Nexus 6P, the
USB configuration can be changed by first rebooting the phone in
bootloader mode and then issuing the command “fastboot oem
bp-tools-on” and “fastboot oem enable-bp-tools” to Nexus 6
and Nexus 6P, respectively as reported in [30]. After establishing
serial communication with the device, it is possible to communicate
with the smartphone through the AT interface.
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