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Figure 1: “Do as I Do” motion transfer: given a YouTube clip of a ballerina (top), and a video of a graduate student performing various
motions, our method transfers the ballerina’s performance onto the student (bottom). Video: https://youtu.be/mSaIrz8lM1U

Abstract

This paper presents a simple method for “do as I do”
motion transfer: given a source video of a person dancing,
we can transfer that performance to a novel (amateur) tar-
get after only a few minutes of the target subject perform-
ing standard moves. We approach this problem as video-to-
video translation using pose as an intermediate represen-
tation. To transfer the motion, we extract poses from the
source subject and apply the learned pose-to-appearance
mapping to generate the target subject. We predict two con-
secutive frames for temporally coherent video results and
introduce a separate pipeline for realistic face synthesis.
Although our method is quite simple, it produces surpris-
ingly compelling results (see video). This motivates us to
also provide a forensics tool for reliable synthetic content
detection, which is able to distinguish videos synthesized by
our system from real data. In addition, we release a first-
of-its-kind open-source dataset of videos that can be legally
used for training and motion transfer.

∗C. Chan is currently a graduate student at MIT CSAIL.
†T. Zhou is currently affiliated with Humen, Inc.

1. Introduction

Consider the two video sequences on Figure 1. The top
row is the input – it is a YouTube clip of a ballerina (the
source subject) performing a sequence of motions. The
bottom row is the output of our algorithm. It corresponds
to frames of a different person (the target subject) appar-
ently performing the same motions. The twist is that the
target person never performed the same exact sequence of
motions as the source, and, indeed, knows nothing about
ballet. He was instead filmed performing a set of standard
moves, without specific reference to the precise actions of
the source. And, as is obvious from the figure, the source
and the target are of different genders, have different builds,
and wear different clothing.

In this work, we propose a simple but surprisingly ef-
fective approach for “Do as I Do” video retargeting – au-
tomatically transferring the motion from a source to a tar-
get subject. Given two videos – one of a target person
whose appearance we wish to synthesize, and the other of
a source subject whose motion we wish to impose onto
our target person – we transfer motion between these sub-
jects by learning a simple video-to-video translation. With
our framework, we create a variety of videos, enabling un-
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trained amateurs to spin and twirl like ballerinas, perform
martial arts kicks, or dance as vibrantly as pop stars.

To transfer motion between two video subjects in a
frame-by-frame manner, we must learn a mapping between
images of the two individuals. Our goal is, therefore, to
discover an image-to-image translation [16] between the
source and target sets. However, we do not have corre-
sponding pairs of images of the two subjects performing the
same motions to supervise learning this translation. Even if
both subjects perform the same routine, it is still unlikely to
have an exact frame to frame pose correspondence due to
body shape and motion style unique to each subject.

We observe that keypoint-based pose preserves motion
signatures over time while abstracting away as much sub-
ject identity as possible and can serve as an intermediate
representation between any two subjects. We therefore use
pose stick figures obtained from off-the-shelf human pose
detectors, such as OpenPose [6, 34, 43], as an intermediate
representation for frame-to-frame transfer, as shown in Fig-
ure 2. We then learn an image-to-image translation model
between pose stick figures and images of our target person.
To transfer motion from source to target, we input the pose
stick figures from the source into the trained model to obtain
images of the target subject in the same pose as the source.

The central contribution of our work is a surprisingly
simple method for generating compelling results on human
motion transfer. We demonstrate complex motion transfer
from realistic in-the-wild input videos and synthesize high-
quality and detailed outputs (see Section 4.3 and our video
for examples). Motivated by the high quality of our results,
we introduce an application for detecting if a video is real
or synthesized by our method. We strongly believe that it is
important for work in image synthesis to explicitly address
the issue of fake detection (Section 5).

Furthermore, we release a two-part dataset: First, five
long single-dancer videos which we filmed ourselves that
can be used to train and evaluate our model, and sec-
ond, a large collection of short YouTube videos that can
be used for transfer and fake detection. We specifi-
cally designate the single-dancer data to be high-resolution
open-source data for training motion transfer and video
generation methods. The subjects whose data we re-
lease have all consented to allowing the data to be
used for research purposes. For more details, see our
project website https://carolineec.github.io/
everybody_dance_now .

2. Related Work
Over the last two decades there has been extensive

work dedicated to motion transfer. Early methods focused
on creating new content by manipulating existing video
footage [5, 12, 31]. For example, Video Rewrite [5] creates
videos of a subject saying a phrase they did not originally

Pose to Video

Video to Pose

Figure 2: Our method creates correspondences by detecting poses
in video frames (Video to Pose) and then learns to generate images
of the target subject from the estimated pose (Pose to Video).

utter by finding frames where the mouth position matches
the desired speech. Efros et al. [12] use optical flow as a de-
scriptor to match different subjects performing similar ac-
tions allowing “Do as I do” and “Do as I say” retargeting.
Classic computer graphics approaches to motion transfer at-
tempt to perform this in 3D. Ever since the retargeting prob-
lem was proposed between animated characters [14], solu-
tions have included the use of inverse kinematic solvers [23]
and retargeting between significantly different 3D skele-
tons [15]. Our approach is similarly designed for in-the-
wild video subjects, although we learn to synthesize novel
motions rather than manipulating existing frames and we
use 2D representations.

Several approaches rely on calibrated multi-camera se-
tups to ‘scan’ a target actor and manipulate their motions
in a new video through a fitted 3D model of the target. To
obtain 3D information, Cheung et al. [9] propose an elabo-
rate multi-view system to calibrate a personalized kinematic
model, obtain 3D joint estimations, and render images of
a human subject performing new motions. Xu et al. [45]
use multi-view captures of a target subject performing sim-
ple motions to create a database of images and transfer mo-
tion through a fitted 3D skeleton and corresponding surface
mesh for the target. Work by Casas et al. use 4D Video Tex-
tures [7] to compactly store a layered texture representation
of a scanned target person and use their temporally coher-
ent mesh and data representation to render video of the tar-
get subject performing novel motions. In contrast, our ap-
proach explores motion transfer between 2D video subjects
and avoid data calibration and lifting into 3D space.

Similarly to our method, recent works have applied deep
learning for reanimation in different applications and rely
on more detailed input representations. Given synthetic ren-
derings, an interior face model, and a gaze map as input,
Kim et al. [19] transfer head position and facial expres-
sions between human subjects and render their results in
detailed portrait videos. Our problem is analogous to this
work except we retarget full body motion, and the inputs
to our model as 2D pose stick figures as opposed to more
detailed 3D representations. Similarly, Martin-Brualla et
al. [29] apply neural re-rendering to enhance rendering of
human motion capture for VR/AR purposes. The primary
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Figure 3: (Top) Training: Our model uses a pose detector P to create pose stick figures from video frames of the target subject.
We learn the mapping G alongside an adversarial discriminator D which attempts to distinguish between the “real” correspondences
(xt, xt+1), (yt, yt+1) and the “fake” sequence (xt, xt+1), (G(xt), G(xt+1)) . (Bottom) Transfer: We use a pose detector P to obtain
pose joints for the source person that are transformed by our normalization process Norm into joints for the target person for which pose
stick figures are created. Then we apply the trained mapping G.

focus of this work is to render realistic humans in real time
and similarly uses a deep network to synthesize their final
result, but unlike our work does not address motion transfer
between subjects. Villegas et al. [37] focus on retargeting
motion between rigged skeletons and demonstrate reanima-
tion in 3D characters without supervised data. Similarly,
we learn to retarget motion using a skeleton-like interme-
diate representation, however we transfer full body motion
between human subjects who are not rigged to the skeleton
unlike animated characters.

Recent methods focus on disentangling motion from ap-
pearance and synthesizing videos with novel motion [36, 2].
MoCoGAN [36] employs unsupervised adversarial training
to learn this separation and generates videos of subjects per-
forming novel motions or facial expressions. This theme is
continued in Dynamics Transfer GAN [2] which transfers
facial expressions from a source subject in a video onto a
target person given in a static image. Similarly, we apply
our representation of motion to different target subjects to
generate new motions. However, in contrast to these meth-
ods we specialize on synthesizing detailed dance videos.

Modern approaches have shown success in generating
detailed single images of human subjects in new poses [3,
10, 11, 18, 22, 27, 28, 33, 38, 13, 46]. Works including
Ma et al. [27, 28] and Siarohin et al. [33] have introduced
novel architectures and losses for this purpose. Further-
more, [39, 38] have shown pose is an effective supervisory
signal for future prediction and video generation. However
these works are not designed specifically for motion trans-
fer. Rather than generating possible views of a previously
unseen person from a single input image, we are interested

in learning the style of a single, known person from large
amounts of personalized video data and synthesizing them
dancing in a detailed high-resolution video.

Concurrent with our work, [1, 4, 24, 40] learn mappings
between videos and demonstrate motion transfer between
faces and from poses to body. Wang et al. [40] achieves re-
sults of similar quality to ours with a more complex method
and significantly more computational resources.

Our work is made possible by recent rapid advances
along two separate directions: robust pose estimation, and
realistic image-to-image translation. Modern pose detection
systems including OpenPose [6, 34, 43] and DensePose [32]
allow for surprisingly reliable and fast pose extraction in a
variety of scenarios. At the same time, the recent emergence
of image-to-image translation models, pix2pix [16], Co-
GAN [26], UNIT [25], CycleGAN [48], DiscoGAN [20],
Cascaded Refinement Networks [8], and pix2pixHD [41],
have enabled high-quality single-image generation. We
build upon these two building blocks by using pose detec-
tion as an intermediate representation and extending upon
single-image generation to synthesize temporally-coherent,
surprisingly realistic videos.

3. Method

Given a video of a source person and another of a target
person, our goal is to generate a new video of the target en-
acting the same motions as the source. To accomplish this
task, we divide our pipeline into three stages – pose detec-
tion, global pose normalization, and mapping from normal-
ized pose stick figures to the target subject. See Figure 3 for



an overview of our pipeline. In the pose detection stage we
use a pre-trained state-of-the-art pose detector to create pose
stick figures given frames from the source video. The global
pose normalization stage accounts for differences between
the source and target body shapes and locations within the
frame. Finally, we design a system to learn the mapping
from the pose stick figures to images of the target person
using adversarial training. Next we describe each stage of
our system.

3.1. Pose Encoding and Normalization

Encoding body poses To encode the body pose of a sub-
ject image, we use a pre-trained pose detector P (Open-
Pose [6, 34, 43]) which accurately estimates 2D x, y joint
coordinates. We then create a colored pose stick figure by
plotting the keypoints and drawing lines between connected
joints as shown in Figure 2.

Global pose normalization In different videos, subjects
may have different limb proportions or stand closer or far-
ther to the camera than one another. Therefore when re-
targeting motion between two subjects, it may be neces-
sary to transform the pose keypoints of the source person
so that they appear in accordance with the target person’s
body shape and location as in the Transfer section of Fig-
ure 3. We find this transformation by analyzing the heights
and ankle positions for the poses of each subject and use a
linear mapping between the closest and farthest ankle po-
sitions in both videos. After gathering these positions, we
calculate the scale and translation for each frame based on
its corresponding pose detection. Details of this process are
described in Section 8.5.

3.2. Pose to Video Translation

Our video synthesis method is based off of an adversar-
ial single frame generation process presented by Wang et
al. [41]. In the original conditional GAN setup, the genera-
tor network G engages in a minimax game against multi-
scale discriminator D = (D1, D2, D3). The generator
must synthesize images in order to fool the discriminator
which must discern between “real” (ground truth) images
and “fake” images produced by the generator. The two net-
works are trained simultaneously and drive each other to
improve - Gr learns to synthesize more detailed images to
deceive D which in turn learns differences between gener-
ated outputs and ground truth data. For our purposes, G
synthesizes images of a person given a pose stick figure.

Such single-frame image-to-image translation methods
are not suitable for video synthesis as they produce temporal
artifacts and cannot generate the fine details important in
perceiving humans in motion. We therefore add a learned
model of temporal coherence as well as a module for high
resolution face generation.

Gf

xF

r

r + G(x)F

G(x)FG(x)

G(x)F := r + G(x)F

x

Figure 4: Face GAN setup. Residual is predicted by generator Gf

and added to the original face prediction from the main generator.

Temporal smoothing To create video sequences, we
modify the single image generation setup to enforce tempo-
ral coherence between adjacent frames as shown in Figure 3
(top right). Instead of generating individual frames, we pre-
dict two consecutive frames where the first output G(xt−1)
is conditioned on its corresponding pose stick figure xt−1
and a zero image z (a placeholder since there is no previ-
ously generated frame at time t − 2). The second output
G(xt) is conditioned on its corresponding pose stick fig-
ure xt and the first output G(xt−1). Consequently, the dis-
criminator is now tasked with determining both the differ-
ence in realism and temporal coherence between the “fake”
sequence (xt−1, xt, G(xt−1), G(xt)) and “real” sequence
(xt−1, xt, yt−1, yt). The temporal smoothing changes are
now reflected in the updated GAN objective

Lsmooth(G,D) = E(x,y)[logD(xt, xt+1, yt, yt+1)]

+Ex[log(1−D(xt, xt+1, G(xt), G(xt+1))] (1)

Face GAN We add a specialized GAN setup to add more
detail and realism to the face region as shown in Figure 4.
After generating the full image of the scene with the main
generator G, we input a smaller section of the image cen-
tered around the face (i.e. 128× 128 patch centered around
the nose keypoint), G(x)F , and the input pose stick figure
sectioned in the same fashion, xF , to another generator Gf

which outputs a residual r = Gf (xF , G(x)F ). The final
synthesized face region is the addition of the residual with
the face region of the main generator r + G(x)F . A dis-
criminator Df then attempts to discern the “real” face pairs
(xF , yF ) from the “fake” face pairs (xF , r +G(x)F ), sim-
ilarly to the original pix2pix [16] objective:

Lface(Gf , Df ) = E(xF ,yF )[logDf (xF , yF )]

+ExF
[log

(
1−Df (xF , G(x)F + r)

)
]. (2)

Here xF is the face region of the original pose stick figure
x and yF is the face region of ground truth target person
image y. Similarly to the full image, we add a perceptual
reconstruction loss on comparing the final face r + G(x)F
to the ground truth target person’s face yF .



Figure 5: Transfer results. In each section we show four consecutive frames. The top row shows the source subject and the bottom row
shows the synthesized outputs of the target person.

3.3. Full Objective

We employ training in stages where the full image GAN
is optimized separately from the specialized face GAN.
First we train the main generator and discriminator (G,D)
during which the full objective is -

min
G

((max
Di

∑
ki

Lsmooth(G,Dk)) + λFM

∑
ki

LFM(G,Dk)

+λP (LP (G(xt−1), yt−1) + LP (G(xt), yt))) (3)

Where i = 1, 2, 3. Here, LGAN(G,D) is the single image
adversarial loss presented in the original pix2pix paper [16]:

LGAN(G,D) = E(x,y)[logD(x, y)]+Ex[log(1−D(x,G(x))]
(4)

LFM(G,D) is the discriminator feature-matching loss pre-
sented in pix2pixHD, and LP (G(x), y) is the perceptual
reconstruction loss [17] which compares pretrained VG-
GNet [35] features at different layers of the network (fully
specified in the Section 8.2).

After this stage, the full image GAN weights are frozen
and we optimize the face GAN with objective

min
Gf

((
max
Df

Lface(Gf , Df )
)
+ λPLP (r +G(x)F , yF )

)
(5)

where LFM(G,D) is the discriminator feature-matching
loss presented in pix2pixHD, and LP is a perceptual recon-
struction loss [17] which compares pretrained VGGNet [35]
features at different layers of the network. For training de-
tails see Section 8.2.

4. Experiments
We compare our performance to baseline methods on

multiple target subjects and source motions.

4.1. Setup

We collect two types of data long, open-source, single-
dancer target videos which we film ourselves to train our



model on and make publicly available, and in-the-wild
source videos collected online for motion transfer. The
filming set-up for target videos and collection method for
source videos are detailed in Section 8.3.

Baseline methods 1) Nearest Neighbors. For each
source video frame, we retrieve the closest match in the
training target sequence using the following pose distance
metric: For two poses p, p′ each with n joints p1, ..., pn and
p′1, ..., p

′
n, we define the distance between them as the nor-

malized sum of the L2 distances between the corresponding
joints pk = (xk, yk) and p′k = (x′k, y

′
k):

d(p, p′) =
1

n

n∑
k=1

‖pk − p′k‖2 (6)

The adjacent target matches frames are then concatenated
into a frame-by-frame nearest neighbors sequence.
2) Balakrishnan et al. (PoseWarp) [3] generate images of
a given target subject in a new pose. While, unlike ours, this
method is designed for single image synthesis, we use it to
synthesize a video frame-by-frame for comparison.

Ablation conditions 1) Frame-by-frame synthesis
(FBF). In this condition we ablate our temporal smoothing
setup and apply pix2pixHD [41] on a per-frame basis.
2) Temporal smoothing (FBF+TS). In this condition we
ablate the Face GAN module to study the difference it
makes on the final result. 3) Our model (FBF+TS+FG).
uses both temporal smoothing and a Face GAN.

Evaluation metrics We use perceptual studies on Me-
chanical Turk for evaluating the video results of our final
method in comparison to ablated conditions and baselines.
For the ablation study, we further measure the quality of
each synthesized frame using two metrics: 1) SSIM. Struc-
tural Similarity [42] and 2) LPIPS Learned Perceptual Im-
age Patch Similarity [47]. We examined the pose distance
seen in Equation 6 to measure the similarity between input
and synthesized pose. However, we found this distance to
be not very informative due to noisy detections.

4.2. Quantitative Evaluation

We quantitatively compare our approach against the
baselines, and then against ablated versions of our method.

4.2.1 Comparison to Baselines

We compare our method to baselines on the same trans-
fer task for all subjects for which we filmed longer videos.
From a single out-of-sample source video, we synthesize a
transfer video for every baseline-subject pair. We then crop
the same 10-second snippets of video for each baseline and
subject pair and use these for our perceptual studies.

Method 1 2 3 4 5 Total

NN 95.9% 96.4% 94.6% 95.8% 94.7% 95.1%
PoseWarp [3] 83.1% 69.9% 88.7% 84.6% 74.4% 83.3%

Table 1: Comparison to baselines using perceptual studies for sub-
jects 1 through 5 and in total average. We report the percentage
of time participants chose our method as more realistic than the
baseline.

Method 1 2 3 4 5 Total

NN 85% 93% 94% 90% 91% 91.2%
PoseWarp [3] 77.5% 70% 80% 90% 78.7% 79.1%

Table 2: Comparison of our method without Face GAN (FBF+TS
variant) to baselines for subjects 1 through 5 and in total average.
We report the percentage of time participants chose the FBF+TS
ablation as more realistic than the baseline.

Participants on MTurk watched a series of video pairs.
In each pair, one video was synthesized using our method;
the other by a baseline. They were then asked to pick the
more realistic one. Videos of resolution 144×256 (as this is
the highest resolution that PoseWarp baseline can produce)
were shown, and after each pair, participants were given
unlimited time to respond. Each task consisted of 18 pairs
of videos and was performed by 100 distinct participants.
Table 1 displays the results of this study and shows that par-
ticipants indicated our method is more realistic 95.1% and
83.3% of the time on average in comparison to the Nearest
Neighbors and PoseWarp [3] baselines respectively.

We include an additional perceptual study to verify our
method is not preferred over the others simply due to more
emphasis on face synthesis. We compare the FBF+TS vari-
ant (without the Face GAN module) to both baselines in Ta-
ble 2. We find that the FBF+TS ablation is consistently pre-
ferred, albeit slightly less than our full model, over the Near-
est Neighbors and PoseWarp baselines 91.2% and 79.1% of
the time on average respectively.

4.2.2 Ablation Study

We perform an ablation study on held-out test data of the
target subject (the source and target are the same) since we
do not have paired same-pose frames across subjects.

As shown in Table 3a(bottom), both SSIM and LPIPS
scores are similar for all model variations on the body re-
gions. Scores on full images are even more similar, as the
ablated models have no difficulty generating the static back-
ground. However, Table 3a(top) demonstrates the effective-
ness of our face residual generator by showing the improve-
ment of our full model over the the FBF+TS condition.

As these comparisons are in a frame-by-frame fash-
ion they do not emphasize the usefulness of our temporal
smoothing setup. The effect of this module can be seen in
the qualitative video results and in the perceptual studies



Region Metric FBF FBF+TS FBF+TS+FG
Fa

ce SSIM 0.784 0.811 0.816
LPIPS 0.045 0.039 0.036

B
od

y SSIM 0.828 0.838 0.838
LPIPS 0.057 0.051 0.050

(a) Metric comparison for synthesized face (top) and full-body
(bottom) regions. Metrics are averaged over the 5 subjects. For
SSIM higher is better. For LPIPS lower is better.

Condition 1 2 3 4 5 Total

FBF 54.1% 69.7% 62.4% 53.8% 60.0% 58.8%
FBF+TS 59.6% 56.4% 50.3% 53.0% 53.1% 53.9%

(b) Perceptual study results for subjects 1 through 5 and in total
average. We report the percentage of time participants chose our
method as more realistic than the ablated conditions.

Table 3: Ablation studies. We compare frame-by-frame synthesis
(FBF), adding temporal smoothing (FBF+TS) and our final model
with temporal smoothing and Face GAN modules (FBF+TS+FG).

Condition 1 2 3 4 5 Total

Prefer FBF+TS 60.5% 62% 57.5% 50% 62.5% 58.5%

Table 4: Comparison of our method without Face GAN (FBF+TS)
to the FBF ablation for subjects 1 through 5 and in total average.
We report the percentage of time participants chose the FBF+TS
ablation over the FBF ablation.

results in Table 3b. Here we see that our method is pre-
ferred 58.8% and 53.3% of the time over frame-by-frame
synthesis and the No Face GAN (FBF+TS) setup respec-
tively. In general, this shows that incorporating temporal
information at training time positively influences video re-
sults. Although the effect of the Face GAN can be be some-
what subtle, overall this addition benefits our results, espe-
cially in the case of subject 1 whose training video is very
sharp where facial details are easily visible.

We further compare our method without the Face GAN
(FBF+TS) to the frame-by-frame (FBF) ablation to verify
our temporal smoothing setup alone improves result qual-
ity. Table 4 reports that the FBF+TS ablation is preferred
on average over the FBF alone. Note that for subject 4 FBF
produced noticeable flickering, but FBF+TS introduced tex-
ture artifacts on his loose shirt (see Figure 9).

4.3. Qualitative Results

Transfer results for multiple source and target subjects
can be seen in Figure 5. The advantage of using the Face
GAN module can be seen in a single frame comparison in
Figure 6. As mentioned, [3] is designed for single image
synthesis. Nonetheless, even for a single frame transfer, we
outperform [3] as we show in Figure 7.

While the above single-image and quantitative results

FBF FBF + TS FBF + TS + FG Ground Truth

Figure 6: Face image comparison on held-out data. We com-
pare frame-by-frame synthesis (FBF), adding temporal smoothing
(FBF+TS) and our full model (FBF+TS+FG).

Ground Truth Ours PoseWarp [3] Nearest Neighbor

Figure 7: Comparison between our model, [3], and nearest neigh-
bors on single-frame synthesis on held-out data.

(Section 4.2) suggest the superiority of our approach, more
significant difference can be observed in our video. There
we find the temporal modeling produces more frame to
frame coherence than the frame-by-frame ablation, and that
adding a specialized facial generator and discriminator adds
considerable detail and realism.

5. Detecting Fake Videos

Recent progress on image synthesis and generative mod-
els has narrowed the gap between synthesized and real im-
ages and videos, which has raised legal and ethical ques-
tions on video authenticity (among many other social im-
plications). Given the high quality of our results, it is im-
portant to investigate mechanisms for detecting computer-
generated videos including ones generated by our model.

We train a fake-detector to identify fake videos created
by our system — given a video, the fake-detector flags it as
real or fake. We train the fake-detector in a parallel fashion
to our synthesis process, to classify whether a sequence of
2 consecutive frames is real (from ground-truth frames) or
fake (from our generation). This allows the fake-detector
to exploit cues based on the fidelity of individual frames as
well as consistency across time. To make a decision for the
whole video in question, we multiply the decision probabil-
ities for all consecutive frame pairs. Details of the network
architecture are included in Section 8.2. For the purpose
of training the fake-detector, we collect a 62-subject set of



Figure 8: Multi-subject synchronized dancing. By applying the same source motion to multiple subjects, we can create the effect of them
performing synchronized dance moves.

Figure 9: Failure cases. Ground truth appearance reference (left)
followed by our results (right).

Source Motion Same subject Mars Copeland

Accuracy 95.68% 96.70% 97.00%

Table 5: Fake detection average accuracy for held-out target sub-
jects. As seen in the rows, fake videos were created for each target
subject using same-subject and different-subject source motions.

short 1920 × 1080 resolution dancing videos. This larger
dataset is collected from public YouTube videos where a
subject dances in front of a static camera for an average of
3 minutes. We split this set into 48 subjects for training and
14 held-out subjects for testing.

We train a separate synthesis model for each of the 48
train subjects to produce fake content for detection. By
training our fake-detector on multiple fake videos depicting
a large set of subjects we ensure that it generalizes to de-
tecting fakes of different people and does not over-fit to one
or two individuals. We note that since each person dancing
performs a rich set of motions we require less training data
than for detecting fakes in still images.

We evaluate our fake-detector on synthesized videos for
14 held-out test subjects. We use both motion taken from
the same subject (where the source and target are the same
person) and motion driven by a different source subject
(Bruno Mars and Misty Copeland) to synthesize fake videos
for each held out subject. Our results are shown in Ta-
ble 5. Overall, the fake-detector successfully distinguishes
real and fake sequences regardless of where the source mo-
tion is from. As expected, our fake detection accuracy is

lowest for same-person motion transfer, and is highest for
transfer of motion from a prima ballerina (Misty Copeland).

6. Potential Applications
One fun application of our system is to create a motion-

synchronized dancing video with multiple subjects (say, for
making a family reunion video). Given trained synthesis
models for multiple subjects, we use the same source video
to drive the motion of all target subjects — creating an ef-
fect of them performing the same dance moves in a syn-
chronized manner. See Figure 8 and the video.

Several systems based on our prototype description were
recently successfully employed commercially. One exam-
ple is an augmented reality stage performance art piece
where a 3D-rendered dancer appears to float next to a real
dancer [30]. Another is an in-game entertainment applica-
tion making NBA players dance [44].

7. Limitations and Discussion
Our relatively simple model is usually able to create arbi-

trarily long, good-quality videos of a target person dancing
given the movements of a source dancer to follow. How-
ever, it suffers from several limitations.

We have included examples of visual artifacts in Fig-
ure 9. On the left, our model struggles with loose cloth-
ing or hair which is not conveyed well through pose. The
middle columns show a missing right arm which was not
detected by OpenPose. On the right we observe some tex-
ture artifacts in shirt creases. Further work could focus on
improving results by combining target videos with different
clothing or scene lighting, improving pose detection sys-
tems, and mitigating the artifacts caused by high frequency
textures in loose/wrinkled clothing or hair.

Our pose normalization solution does not account for



different limb lengths or camera positions. These discrep-
ancies additionally widen the gap between the motion seen
in training and testing. However, our model is able to gen-
eralize to new motions fairly well from the training data.
When filming a target sequence, we have no specific source
motion in mind and do not require the target subject per-
forming similar motions to any source. We instead learn
a single model that generalizes to a wide range of source
motion. However our model sometimes struggles to extrap-
olate to radically different poses. For example, artifacts can
occur if the source motion contains extreme poses such as
handstands if the target training data did not contain such
upside-down poses. Future work could focus on the train-
ing data, i.e. what poses and how many are needed to learn a
effective model. This area relates to work on understanding
which training examples are most influential [21].
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8. Appendix
8.1. Video Demonstration

Our video demo can be found at https://youtu.
be/mSaIrz8lM1U and examples from our comparison to
baselines and ablation study can be found at https://
youtu.be/sQD0WVS0blg.

8.2. Implementation Details

Our generator and discriminator architectures are mod-
ified from pix2pixHD [41] to handle the temporal set-
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ting. We follow the progressive learning schedule from
pix2pixHD and learn to synthesize at 512× 256 at the first
(global) stage, and then upsample to 1024× 512 at the sec-
ond (local) stage. For predicting face residuals, we use the
global generator of pix2pixHD and a single 70× 70 Patch-
GAN discriminator [16]. We set hyperparameters λP = 5
and λV GG = 10 during the global and local training stages
respectively. For the dataset collected in Section 4.1, we
trained the global stage for 5 epochs, the local stage for 30
epochs, and the face GAN for 5 epochs.

For the perceptual loss LP , we compare the conv1 1,
conv2 1, conv3 1, conv4 1, and conv5 1 layer out-
puts of the VGG-19 network.

Our generator and discriminator architectures follow that
presented by Wang et al. [41]. The fake-detector archi-
tectures matches that of the discriminator with a final fully
connected layer.

8.3. Dataset Collection

Our dataset of long target videos consists of footage we
filmed ourselves from 8 to 17 minutes with 4 videos at
1920 × 1080 resolution and 1 at 1280 × 720. Our goal in
collecting a dataset of target videos is to provide the com-
munity with open-source data for which we explicitly col-
lect release forms in which subjects allow their data to be
released to other researchers. We recruited target subjects
from different sources: friends, professional dancers, re-
porters etc. To learn the appearance of the target subject
in many poses, it is important that the target video captures
a sufficient range of motion and sharp frames with mini-
mal blur. Similarly, we used a stationary camera to ensure
a static background in all frames. To ensure the quality of
the frames, we filmed our target subjects for between 8 and
30 minutes of real time footage at 120 frames per second
using a modern cellphone camera, and use the first 20% of
the footage for training and the last 80% for testing. Since
our pose representation does not encode information about
clothes and hair, we instructed our target subjects not to
wear loose clothing and to tie up long hair.

In contrast, source videos can be easily collected on-
line as we only require decent pose detections on these.
We therefore use in-the-wild single-dancer videos where the
only restriction we enforce is a static camera position.

8.4. Comparison with vid2vid

We also compare our model with a concurrent video syn-
thesis framework called vid2vid [40]. The excessive re-
quirement of memory and computing power of vid2vid pro-
hibits us from comparing with their model in the high reso-
lution setup. Instead, we train both our model and theirs in
lower resolution (512× 256). Our system and vid2vid gen-
erally perform similarly and produce results of comparable
quality. We provide a qualitative comparison in Figure 10.

Ours (Global)

vid2vid

Figure 10: We compare a lower resolution version of our model
without a Face GAN (top) with a lower resolution of vid2vid [41].
We find our results comparable.

8.5. Global Pose Normalization Details

In this section we describe our normalization method to
match poses between the source and target. Consider a case
where the source subject is significantly taller in frame than
the target or is slightly elevated above the target subject’s in
frame position. If we directly input the unmodified poses
to our system, we may generate images of the target per-
son which are not congruent with the scene. In this ex-
ample, the target person may appear large with respect to
the background or surrounding objects, and may appear to
be levitating since the input pose places the feet above the
floor. Additionally, when generating an image from a very
different pose from the in proportion and reasonably posi-
tioned poses in training, the overall quality of synthesis is
expected to decline. Therefore we design a method to rea-
sonably match the poses by finding a suitable transforma-
tion between the source and target poses. We parametrize
this transformation in terms of a scale and translation factor
applied to all pose keypoints for a given frame.

To find a suitable translation factor, we need to determine
the position of both subjects within their respective frames.
We first find the closest position sclose and farthest position
sfar the source subject is away from the camera in their
video. Similarly, we do the same for the target by determin-
ing tclose and tfar respectively. The goal is then to map the
close and far range of the source to that of the target subject
as to match the positions of both subjects, i.e. sfar 7→ tfar
and sclose 7→ tclose. Given a frame where the source is at
position y, we then translate the source’s pose vertically by:

translation = tfar +
y − sfar

sclose − sfar
(tclose − tfar) (7)

In practice, we use the average of the y coordinates of the
subject’s ankles to determine the position within a given
frame.

To reasonably scale the source poses, we determine the



heights of each subject at their closest and farthest positions
in their video - denote these quantities as hsclose , hsfar

for
the source and htclose , htfar

for the target subjects respec-
tively. We then determine separate scales for the close po-
sition given by cclose =

htclose

hsclose
and similarly for the far

position given by cfar =
htfar

hsfar
. When given a frame where

the source is at position y, we scale the source’s pose (in
both x, y directions) by:

scale = cfar +
y − sfar

sclose − sfar
(cclose − cfar) (8)

We use the euclidean distance between the average ankle
position and the nose keypoint of our given pose as the sub-
ject’s height in a given frame.

After the translation and scale factors have been deter-
mined for a given source pose, we then add the translation
to all keypoints and then apply the scale factor so that the
ankle y positions remain the same (i.e. the ground is the x
axis).

Given poses from a subject, we find the close position
by taking the maximum y coordinate of their average ankle
position over all frames.

sclose = max {sankle1 + sankle2
2

}

The far position is found by clustering the y ankle coordi-
nates which are less than (or spatially above) the median
ankle position and about the same distance as the maximum
ankle position’s distance to the median ankle position. If we
denote S = sankle1+sankle2

2 as the average ankle position in
a given frame, then the clustering is as described by the set

max{S : ||S − smed| < α|sclose − smed||} ∩ {S < smed}
(9)

where smed is the median foot position, max is the max-
imum ankle position, and ε and α are scalars. In practice
we find setting α = 0.7 generally works well, although this
scalar can be finetuned on a case by case basis since it de-
pends highly on the camera height and the subject’s range
of motion.


